Accepted Manuscript

This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution.

The definitive version was published in Science on 366(6467), 2019.

DOI: http://dx.doi.org/10.1126/science.aay5945

1 Catchment properties and the photosynthetic trait composition of

2 freshwater plant communities

3 Short title: Catchments rule aquatic plant traits

4 One sentence summary: The geographical distribution of bicarbonate use in freshwater plants is
5 controlled by catchment characteristics.

6

7 Author list:

- 8 Iversen^{*}, L. L.^{1,2}, Winkel^{*}, A.¹, Baastrup-Spohr^{*}, L.¹, Hinke, A. B.¹, Alahuhta, J.³, Baattrup-
- 9 Pedersen, A.⁴, Birk, S.⁵, Brodersen, P.¹, Chambers, P. A.⁶, Ecke, F.⁷, Feldmann, T.⁸, Gebler, D.⁹,
- 10 Heino, J.¹⁰, Jespersen, T. S.¹, Moe, S. J.¹¹, Riis, T.³, Sass, L.¹², Vestergaard, O.¹³, Maberly^{#§}, S.
- 11 $C.^{14}$, Sand-Jensen^{#§}, K.¹, Pedersen^{#§}, O.¹
- 12
- 13 * contributed equally
- 14 [§] contributed equally
- 15 [#] Corresponding author (s)
- 16

17 1 University of Copenhagen; 2 Arizona State University; 3 University of Oulu; 4 Aarhus
18 University; 5 Universität Duisburg Essen; 6 Environment Canada; 7 Swedish University of
19 Agricultural Sciences; 8 Estonian University of Life Sciences; 9 Poznán University of Life
20 Sciences; 10 Finnish Environment Institute; 11 Norwegian Institute for Water Research; 12
21 University of Illinois; 13 United Nations Environmental Program; 14 Centre for Ecology &
22 Hydrology

23 ABSTRACT

24 Unlike land plants, photosynthesis in many aquatic plants relies on bicarbonate in addition to 25 CO_2 to compensate for the low diffusivity and potential depletion of CO_2 in water. 26 Concentrations of bicarbonate and CO₂ vary greatly with catchment geology. Here we 27 investigate whether there is a link between these concentrations and the frequency of freshwater 28 plants possessing the bicarbonate use trait. We show, globally, that the frequency of plant species 29 with this trait increases with bicarbonate concentration. Regionally however, the frequency of 30 bicarbonate use is reduced at sites where the CO₂ concentration is substantially above air-31 equilibrium consistent with this trait being an adaptation to carbon limitation. Future 32 anthropogenic changes of bicarbonate and CO₂ concentration may alter the species composition 33 of freshwater plant communities.

34

35 MAIN TEXT

The biogeography of terrestrial plants is influenced by climatic factors; primarily air temperature 36 37 and precipitation (1). Furthermore, the distribution of biochemical traits such as the two terrestrial CO₂ concentrating mechanisms, C₄ photosynthesis and Crassulacean Acid 38 39 Metabolism, are linked to temperature and water availability (2). Although freshwater 40 angiosperms evolved from terrestrial ancestors (3), their growth is controlled by light, nutrients and inorganic carbon (4) rather than water, and therefore the factors influencing their 41 42 biogeography is likely to be different. Inorganic carbon potentially limits photosynthesis in aquatic systems, because the diffusion of CO_2 is 10⁴-fold lower in water than in air. 43 Consequently, the CO_2 concentration needed to saturate photosynthesis is up to 12 times the air 44

45 equilibrium concentration (5). Moreover, rapid photosynthesis can reduce CO₂ in water
46 substantially below air saturation (4).

47

48 In response to carbon limitation, a few aquatic angiosperms evolved the same CO₂ concentrating 49 mechanisms found in their terrestrial ancestors, but the most frequent mechanism, found in about 50 half of studied submerged freshwater plants, is the exploitation of bicarbonate (HCO₃; (4,6)), 51 derived from mineral weathering of soils and rocks in the catchment. Bicarbonate is the 52 dominant form of inorganic carbon in fresh waters when pH is between ~ 6.3 and ~ 10.2 , and its 53 concentration often exceeds that of CO_2 by 10- to 100-fold (6). The ability to use bicarbonate is present in most taxonomic groups and appears to have evolved independently in cyanobacteria, 54 55 eukaryotic algae and vascular aquatic plants (7). This shows the fundamental importance of 56 bicarbonate use to plant fitness (6); increase of photosynthesis, growth and primary productivity 57 at higher bicarbonate concentrations has been documented (8-10). However, bicarbonate use is 58 not ubiquitous, because it involves costs as well as benefits. Costs include energy since it is an 59 active process (11) and rates of photosynthesis at limiting concentrations of inorganic carbon are greater in CO_2 users than in bicarbonate users (5,12). Thus, where CO_2 concentrations are 60 61 substantially above air saturation, as is often the case in streams, the benefit of bicarbonate use 62 will be reduced (13). Furthermore, obligate CO_2 users can exploit alternative CO_2 sources in the 63 air, lake sediment or in the water overlying the sediment (14), allowing continued photosynthesis 64 without the need to invest in mechanisms required for bicarbonate use.

65

66 We hypothesized that since limitation of photosynthesis by inorganic carbon supply is

67 widespread in freshwater plants, the relative concentration of bicarbonate and CO₂ at a particular

site should determine the proportion of plants that are obligate CO₂ users *vs* bicarbonate users.
Since geochemical catchment characteristics determine bicarbonate concentration, there should
be broad biogeographical patterns in the proportion of freshwater plants able to use bicarbonate
while at a smaller scale, both the CO₂ and bicarbonate concentrations in lakes and streams might
structure the functional group composition.

73

74 To test these hypotheses, we generated a database of freshwater angiosperms and their ability to 75 use bicarbonate as an inorganic carbon source, based on data found in the literature. These were 76 complemented with new data we gathered on 35 species from mainly tropical regions where few prior data existed (Table S1 and (15)). The resulting 131 species represent approximately 10% 77 78 of known species with a submerged life stage (16) and of these, 58 (44%) could use bicarbonate. 79 In order to quantify the distribution of bicarbonate users vs CO₂ users, we used: i) approximately 1 million geo-referenced plant records; ii) global plant ecoregion species lists; and iii) 963 site 80 81 specific plant compositions from northern hemisphere lakes and streams (Fig. S1). In each of the 82 investigated 963 sites, plant composition was related to measured concentration of CO₂ and bicarbonate. The geo-referenced plant records and ecoregion species lists were linked to local 83 84 bicarbonate concentrations derived from a constructed global map of bicarbonate concentration 85 (Fig. S2 and (15)).

86

In the analyzed lake and stream sites, concentrations of both bicarbonate and CO₂ affected the occurrence of obligate CO₂ users *vs* bicarbonate users, but differently within and between lakes and streams (Fig. 1, and Fig. S3). The chance of observing a bicarbonate user in lakes and streams correlated directly with concentrations of bicarbonate and CO₂ (Δ Habitat = -0.82 [-1.64;

4

91	0.01] (mean [95% confidence intervals]; Δ represents the difference between streams and lakes
92	in parameter estimates at the log(odds) scale, Fig S3)), Fig. 1A). However, with increasing
93	bicarbonate concentrations, the likelihood of observing a bicarbonate user increased in lakes, but
94	not in streams ($\Delta\beta_{Bicarbonate} = -0.82$ [-1.10; -0.54] Fig. 1B; see (15) for an explanation of β).
95	Moreover, with an increase in CO ₂ , the chance of observing a bicarbonate user decreased in both
96	habitat types ($\Delta\beta_{CO2}$ = -0.04 [-0.22; 0.13], Fig. 1C). The present study shows that the
97	concentration of bicarbonate has a different effect on the proportion of bicarbonate users in lakes
98	vs streams. Unlike in lakes, no relationship between bicarbonate availability and bicarbonate
99	users was found in streams. This upholds our hypothesis that where concentrations of CO_2 are
100	high, the competitive advantage of using bicarbonate as a carbon source for photosynthesis will
101	be reduced even if bicarbonate is available.
102	
103	Across global plant regions (17), the shifting proportions of bicarbonate users vs obligate CO ₂
104	users showed distinct spatial patterns (Fig. 2A). Compared to the overall mean, a higher
105	proportion of bicarbonate users was observed in Africa, temperate Asia, and the northern part of
106	North America (Fig. 2A). Globally, species utilizing bicarbonate were found in areas with higher

bicarbonate concentrations (bicarbonate users - CO_2 users = 0.16 [0.02; 0.30] mM; Fig. 2C; see

108 Fig. 3 for a local example). The proportion of bicarbonate using species increased with

bicarbonate concentrations within ecoregions ($\beta = 0.14$ [0.05; 0.24], (mean [95% confidence

110 limits]), Fig. 2B). Because catchment geology and geological history shape the distribution of

111 lakes and rivers, as well as the bicarbonate concentrations in freshwater ecosystems (18,19), they

are the chief determinants of plant distribution in freshwaters. CO₂ concentrations are largely

regulated by local CO₂ supersaturated inflow (20) and ecosystem metabolism, making modeling

difficult at large spatial scales (19,21). Thus, future models of freshwater CO₂ concentrations
may improve the prediction of plant distributions even further. Although global lake and river
data exist to some extent as annual means (22), given the temporal variability in CO₂
concentration, the appropriate concentration would be that during the growing season at the
specific site (20).

119

120 Anthropogenic changes as a consequence of deforestation, cultivation of land, application of 121 nitrate fertilizers and reduced atmospheric acid deposition (23) are causing large scale increases 122 in bicarbonate concentrations (24,25). The observed increasing bicarbonate concentrations are expected to cause a severe impact on bicarbonate poor lakes, because higher bicarbonate 123 124 concentrations will markedly change species composition (26) by allowing tall, fast growing 125 bicarbonate users to colonize and suppress smaller species adapted to the use of CO_2 alone in or 126 near the sediment (27). There is evidence for re-establishment of species that are able to use 127 bicarbonate, after bicarbonate has increased because of liming (28) or as a result of reduction in 128 acid deposition (29). Moreover, systematic changes in species composition caused by changes in 129 CO_2 concentration has also been demonstrated in a river system where the proportion of CO_2 130 users declined as CO_2 decreased downstream (13). In contrast, increasing atmospheric CO_2 131 concentrations, even if they influence dissolved CO₂, will have little effect on the abundance of 132 bicarbonate users, since increases in CO₂ will be small relative to bicarbonate concentrations and 133 will have little effect on plant photosynthesis rate (30).

134

135 Our study shows that bicarbonate use by aquatic angiosperms is widespread in fresh waters

around the globe, and that the proportion of obligate CO₂ users to bicarbonate users is

- 137 significantly related to the bicarbonate concentration. Among terrestrial plants, the evolution of 138 leaf traits and different photosynthetic pathways that enable rapid carbon assimilation and 139 improved water economy (31) has resulted in global biogeographical patterns that are linked to 140 variations in climate (32,33). In contrast, for freshwater plants, we show that biogeographical 141 patterns of bicarbonate use exist and that these are caused by catchment properties that determine 142 the concentration of bicarbonate and CO₂. This insight will help evaluate the repercussions of future changes in concentration of bicarbonate and CO₂ on the biodiversity and ecosystem 143 144 function for fresh waters. 145 146 **REFERENCES AND NOTES** 147 148 1. M. C. Peel, B. L. Finlayson, T. A. McMahon, Updated world map of the Köppen-Geiger
- 149 climate classification. *Hydro. Earth Syst. Sci. Discus.* **4**, 439-473 (2007).
- C. J. Still, J. A. Berry, G. J. Collatz, R. S. DeFries, Global distribution of C₃ and C₄
 vegetation: carbon cycle implications. *Global Biogeochem. Cycles* **17**, 6-1 (2003).
- 1523.D. H. Les, N. P. Tippery, In time and with water ... the systematics of alismatid153monocotyledons. *Early Events Monocot Evol.* 83, 118-164 (2013).
- T. V. Madsen, S. C. Maberly, Diurnal variation in light and carbon limitation of
 photosynthesis by two species of submerged freshwater macrophyte with a differential
 ability to use bicarbonate. *Freshw. Biol.* 26, 175-187 (1991).
- 157 5. S. C. Maberly, T. V. Madsen, Affinity for CO₂ in relation to the ability of freshwater
 158 macrophytes to use HCO₃⁻. *Func. Ecol.* **12**, 99-106 (1998).
- S. C. Maberly, B. Gontero, Ecological imperatives for aquatic CO₂-concentrating mechanisms. *J. Exp. Bot.* 68, 3797-3814 (2017).
- 161 7. M. Giordano, J. Beardall, J. A. Raven, CO₂ concentrating mechanisms in algae:
 162 mechanisms, environmental modulation, and evolution. *Annu. Rev. Plant Biol.* 56, 99163 131 (2005).
- 1648.K. Sand-Jensen, H. Frost-Christensen, Photosynthesis of amphibious and obligately165submerged plants in CO2-rich lowland streams. *Oecologia* **117**, 31-39 (1998).
- M. R. Andersen, T. Kragh, K. Sand-Jensen, Extreme diel oxygen and carbon cycles in shallow vegetated lakes. *Proc. R. Soc. B Biol. Sci.* 284, 20171427 (2017).
- 10. T. V. Madsen, K. Sand-Jensen, Photosynthetic capacity, bicarbonate affinity and growth
 of *Elodea canadensis* exposed to different concentrations of inorganic carbon. *Oikos* 50,
 170 176-182 (1987).
- 17111.J. A. Raven, J. Beardall, M. Giordano, Energy costs of carbon dioxide concentrating172mechanisms in aquatic organisms. *Photosynth. Res.* **121**, 111-124 (2014).

173 12. T. V. Madsen, S. C. Maberly, High internal resistance to CO₂ uptake by submerged 174 macrophytes that use HCO_3^{-} : measurements in air, nitrogen and helium. *Photosynth.* 175 Res. 77, 183-190 (2003). 176 13. S. C. Maberly, S. A. Berthelot, A. W. Stott, B. Gontero, Adaptation by macrophytes to 177 inorganic carbon down a river with naturally variable concentrations of CO₂. J. Plant. 178 Physiol. 172, 120-127 (2015). 179 14. T. V. Madsen, K. Sand-Jensen, Photosynthetic carbon assimilation in aquatic 180 macrophytes. Aquat. Bot. 41, 5-40 (1991). 181 15. See supplementary materials. K. Murphy et al., World distribution, diversity and endemism of aquatic macrophytes. 182 16. 183 Aquat. Bot. 158, 103127 (2019). 184 17. R. K. Brummitt, F. Pando, S. Hollis, N. A. Brummitt, World geographical scheme for 185 recording plant distributions. (International Working Group on Taxonomic Databases for 186 Plant Sciences (TDWG ..., 2001). 187 18. R. Lauerwald, J. Hartmann, N. Moosdorf, S. Kempe, P. A. Raymond, What controls the 188 spatial patterns of the riverine carbonate system?—A case study for North America. 189 Chem. Geol. 337, 114-127 (2013). 190 R. Marcé et al., Carbonate weathering as a driver of CO₂ supersaturation in lakes. Nat. 19. 191 Geosci. 8, 107-111 (2015). 192 20. S. C. Maberly, P. A. Barker, A. W. Stott, M. M. De Ville, Catchment productivity controls 193 CO₂ emissions from lakes. *Nat. Clim. Change* **3**, 391 (2013). 194 21. L. J. Tranvik *et al.*, Lakes and reservoirs as regulators of carbon cycling and climate. 195 Limnol. Oceanogr. 54, 2298-2314 (2009). 196 P. A. Raymond et al., Global carbon dioxide emissions from inland waters. Nature 503, 22. 197 355 (2013). 198 23. P. A. Raymond, S. K. Hamilton, Anthropogenic influences on riverine fluxes of dissolved 199 inorganic carbon to the oceans. *Limnol. Oceanogr. Let.* **3**, 143-155 (2018). 200 24. P. A. Raymond, N.-H. Oh, R. E. Turner, W. Broussard, Anthropogenically enhanced fluxes 201 of water and carbon from the Mississippi River. Nature 451, 449 (2008). J. L. Stoddard et al., Regional trends in aquatic recovery from acidification in North 202 25. 203 America and Europe. Nature 401, 575 (1999). 204 26. O. Vestergaard, K. Sand-Jensen, Alkalinity and trophic state regulate aquatic plant 205 distribution in Danish lakes. Aquat. Bot. 67, 85-107 (2000). 206 K. Sand-Jensen, M. Sondergaard, Phytoplankton and epiphyte development and their 27. 207 shading effect on submerged macrophytes in lakes of different nutrient status. 208 Internationale Revue Der Gesamten Hydrobiologie 66, 529-552 (1981). 209 28. T. E. Brandrud, Effects of liming on aquatic macrophytes, with emphasis on Scandinavia. 210 Aquat. Bot. 73, 395-404 (2002). 211 D. T. Monteith et al., Biological responses to the chemical recovery of acidified fresh 29. 212 waters in the UK. Environ. Pollut. 137, 83-101 (2005). 213 30. G. Bowes, Facing the inevitable: plants and increasing atmospheric CO₂. Annu. Rev. Plant 214 Biol. 44, 309-332 (1993). 215 31. I. J. Wright et al., The worldwide leaf economics spectrum. Nature 428, 821-827 (2004).

216	32.	H. Lambers, F. S. Chapin Iii, T. L. Pons, Plant physiological ecology. (Springer Science &
217		Business Media, 2008).
218	33.	I. J. Wright et al., Global climatic drivers of leaf size. Science 357 , 917-921 (2017).
219	34.	R. Smart, J. Barko, Laboratory culture of submersed freshwater macrophytes on natural
220		sediments. <i>Aquat. Bot.</i> 21 , 251-263 (1985).
221	35.	S. C. Maberly, D. H. N. Spence, Photosynthetic inorganic carbon use by freshwater
222		plants. <i>J. Ecol.</i> 71 , 705-724 (1983).
223	36.	T. Hengl et al., SoilGrids250m: Global gridded soil information based on machine
224		learning. <i>PLoS one</i> 12 , e0169748 (2017).
225	37.	R. M. Newton, J. Weintraub, R. April, The relationship between surface water chemistry
226		and geology in the North Branch of the Moose River. <i>Biogeochem.</i> 3 , 21-35 (1987).
227	38.	A. Zeileis, F. Cribari-Neto, B. Grün, I. Kos-midis, Beta regression in R. J. Stat. Soft. 34, 1-24
228		(2010).
229	39.	M. Van Kleunen et al., Global exchange and accumulation of non-native plants. Nature
230		525 , 100 (2015).
231	40.	J. Alahuhta et al., Global variation in the beta diversity of lake macrophytes is driven by
232		environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758-1769 (2017).
233	41.	L. Baastrup-Spohr, K. Sand-Jensen, S. C. H. Olesen, H. H. Bruun, Recovery of lake
234		vegetation following reduced eutrophication and acidification. Freshw. Biol. 62, 1847-
235		1857 (2017).
236	42.	S. J. Moe, A. Schmidt-Kloiber, B. J. Dudley, D. Hering, The WISER way of organising
237		ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiol.
238		704 , 11-28 (2013).
239	43.	T. Riis, K. Sand-Jensen, O. Vestergaard, Plant communities in lowland Danish streams:
240		species composition and environmental factors. Aquat. Bot. 66, 255-272 (2000).
241	44.	M. T. Furse et al., The ecological status of European rivers: evaluation and
242		intercalibration of assessment methods. (Springer Science & Business Media, 2009), vol.
243		188.
244	45.	S. Birk, N. Willby, Towards harmonization of ecological quality classification: establishing
245		common grounds in European macrophyte assessment for rivers. Hydrobiol. 652, 149-
246		163 (2010).
247	46.	E. Lewis, D. Wallace, L. J. Allison, "Program developed for CO ₂ system calculations,"
248		(Brookhaven National Lab., Dept. of Applied Science, Upton, NY, 1998).
249	47.	D. N. Karger et al., Climatologies at high resolution for the earth's land surface areas. Sci.
250		Data 4 , 170122 (2017).
251	48.	J. E. Titus, A. M. Pagano, Carbon dioxide and submersed macrophytes in lakes: linking
252		functional ecology to community composition. <i>Ecology</i> 98 , 3096-3105 (2017).
253	49.	S. N. Wood, Generalized additive models: an introduction with R. (Chapman and
254		Hall/CRC, 2017).
255	50.	J. Heino, J. Alahuhta, S. Fattorini, Phylogenetic diversity of regional beetle faunas at high
256		latitudes: patterns, drivers and chance along ecological gradients. Biodivers. Conserv. 24,
257		2751-2767 (2015).
258	51.	O. Schweiger, S. Klotz, W. Durka, I. Kühn, A comparative test of phylogenetic diversity
259		indices. <i>Oecologia</i> 157 , 485-495 (2008).

260	52.	K. R. Clarke, R. M. Warwick, A taxonomic distinctness index and its statistical properties.
261		J. Appl. Ecol. 35 , 523-531 (1998).
262	53.	L. Adamec, Mineral nutrition of carnivorous plants: A review. Bot. Rev. 63, 273-299
263		(1997).
264	54.	K. Sand-Jensen, M. F. Pedersen, S. L. Nielsen, Photosynthetic use of inorganic carbon
265		among primary and secondary water plants in streams. Freshw. Biol. 27, 283-293 (1992).
266	55.	L. Yin, W. Li, T. V. Madsen, S. C. Maberly, G. Bowes, Photosynthetic inorganic carbon
267		acquisition in 30 freshwater macrophytes. <i>Aquat. Bot.</i> 140 , 48-54 (2017).
268	56.	E. L. Smith, The influence of light and carbon dioxide on photosynthesis. J. Gen. Phys. 20,
269		807-830 (1937).
270	57.	S. C. Maberly, T. V. Madsen, Freshwater angiosperm carbon concentrating mechanisms:
271		processes and patterns. <i>Funct. Plant Biol.</i> 29 , 393-405 (2002).
272	58.	J. E. Keeley, Photosynthetic pathway diversity in a seasonal pool community. <i>Func. Ecol.</i>
273		13 , 106-118 (1999).
274	59.	J. R. Newman, J. A. Raven, Photosynthetic carbon assimilation by Crassula helmsii.
275		<i>Oecologia</i> 101 , 494-499 (1995).
276	60.	S. A. Pierini, S. M. Thomaz, Effects of inorganic carbon source on photosynthetic rates of
277		<i>Egeria najas</i> Planchon and <i>Egeria densa</i> Planchon (Hydrocharitaceae). <i>Aquat. Bot.</i> 78 ,
278		135-146 (2004).
279	61.	J. T. Bain, M. C. F. Proctor, The requirement of aquatic bryophytes for free CO2 as an
280		inorganic carbon source: some experimental evidence. New Phytol. 86, 393-400 (1980).
281	62.	D. R. Webb, M. R. Rattray, J. M. A. Brown, A preliminary survey for crassulacean acid
282		metabolism (CAM) in submerged aquatic macrophytes in New Zealand. N. Z. J. Mar.
283		Freshw. Res. 22, 231-235 (1988).
284	63.	T. V. Madsen, S. C. Maberly, G. Bowes, Photosynthetic acclimation of submersed
285		angiosperms to CO ₂ and HCO ₃ ⁻ . Aquat. Bot. 53 , 15-30 (1996).
286	64.	J. I. Jones, J. Eaton, K. Hardwick, Physiological plasticity in <i>Elodea nuttallii</i> (Planch.) St.
287		John. <i>J. Aquat. Plant Man.</i> 31 , 88-88 (1993).
288	65.	H. L. Boston, M. S. Adams, T. P. Pienkowski, Utilization of sediment CO ₂ by selected
289		North American isoetids. <i>Ann. Bot.</i> 60 , 485-494 (1987).
290	66.	A. M. Farmer, D. H. N. Spence, Studies of diurnal acid fluctuations in British isoetid-type
291		submerged aquatic macrophytes. Ann. Bot. 56 , 347-350 (1985).
292	67.	J. A. Raven <i>et al.</i> , The role of CO ₂ uptake by roots and CAM in acquiaition of inorganic C
293		by plants of the isoetid life-form - a review, with new data on Eriocaulon decangulare L
294		New Phytol. 108 , 125-148 (1988).
295	68.	T. K. Van, W. T. Haller, G. Bowes, Comparison of the photosynthetic characteristics of
296		three submersed aquatic plants. <i>Plant Physiol.</i> 58, 761-768 (1976).
297	69.	M. E. Salvucci, G. Bowes, Induction of reduced photorespiratory activity in submersed
298		and amphibious aquatic macrophytes. <i>Plant Physiol.</i> 67, 335-340 (1981).
299	70.	W. Spencer, G. Bowes, Limnophila and Hygrophila: a review and physiological
300		assessment of their weed potential in Florida. J. Aquat. Plant Man. 23, 7-16 (1985).
301	71.	D. H. N. Spence, S. C. Maberly, in Carbon uptake by aquatic photosynthetic organisms,
302		W. J. Lucas, J. L. Berry, Eds. (American Society of Plant Physiologists, Rockville, 1985), pp.
303		125-143.

304	72.	S. Wium-Andersen, Photosynthetic uptake of free CO ₂ , by the roots of <i>Lobelia</i>
305		dortmanna. Physiol. Plant. 25 , 245-248 (1971).
306	73.	H. B. A. Prins, J. F. H. Snel, R. J. Helder, P. E. Zanstra, Photosynthetic HCO3 ⁻ utilization
307		and OH [−] excretion in aquatic angiosperms: light-induced pH changes at the leaf surface.
308		Plant Physiol. 66 , 818-822 (1980).
309	74.	B. Hyldgaard, H. Brix, Plasticity in carbon acquisition of the heterophyllous Luronium
310		natans: An endangered freshwater species in Europe. Aquat. Bot. 94, 127-133 (2011).
311	75.	P. T. Orr, J. Pokorný, P. Denny, P. J. M. Sale, Photosynthetic response of Myriophyllum
312		salsugineum A.E. Orchard to photon irradiance, temperature and external free CO ₂ .
313		Aquat. Bot. 30 , 363-378 (1988).
314	76.	J. E. Keeley, D. R. Sandquist, Carbon: freshwater plants. Plant Cell Environ. 15, 1021-1035
315		(1992).
316	77.	Y. Zhang <i>et al.</i> , Biochemical and biophysical CO ₂ concentrating mechanisms in two
317		species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae).
318		Photosynth. Res. 121 , 285-297 (2014).
319	78.	Y. Kadono, Photosynthetic carbon sources in some Potamogeton species. Bot. Mag. 93,
320		185-194 (1980).
321	79.	A. J. M. Smits, M. J. H. De Lyon, G. Van Der Velde, P. L. M. Steentjes, J. G. M. Roelofs,
322		Distribution of three nymphaeid macrophytes (<i>Nymphaea alba</i> L., <i>Nuphar lutea</i> (L.) Sm.
323		and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of
324		inorganic carbon. <i>Aquat. Bot.</i> 32 , 45-62 (1988).
325	80.	M. Bodner, Inorganic carbon source for photosynthesis in the aquatic macrophytes
326		Potamogeton natans and Ranunculus fluitans. Aquat. Bot. 48 , 109-120 (1994).
327	81.	E. D. Allen, D. H. N. Spence, The differential ability of aquatic plants to utilize the
328		inorganic carbon supply in fresh waters. <i>New Phytol.</i> 87, 269-283 (1981).
329	82.	P. Denny, D. C. Weeks, Effects of light and bicarbonate on membrane potential in
330		Potamogeton schweinfurthii (Benn.). Ann. Bot. 34 , 483-496 (1970).
331	83.	J. M. Bristow, The effects of carbon dioxide on the growth and development of
332		amphibious plants. <i>Can. J. Bot.</i> 47 , 1803-1807 (1969).
333	84.	J. A. Raven, A. M. Johnston, J. R. Newman, C. M. Scrimgeour, Inorganic carbon
334		acquisition by aquatic photolithoatrophs of the Dighty Burn, Angus, U.K.: uses and
335		limitations of natural abundance measurements of carbon isotopes. New Phytol. 127,
336		271-286 (1994).
337	85.	S. Beer, R. G. Wetzel, Photosynthetic carbon metabolism in the submerged aquatic
338		angiosperm Scirpus subterminalis. Plant Sci. Let. 21 , 199-207 (1981).
339	86.	H. B. A. Prins, M. B. de Guia, Carbon source of the water soldier, Stratiotes aloides L.
340		Aquat. Bot. 26 , 225-234 (1986).
341	87.	L. Adamec, Photosynthetic inorganic carbon use by aquatic carnivorous plants. Carn.
342		Plant Newsl., 50-53 (1995).
343	88.	R. E. Moeller, Carbon-uptake by the submerged hydrophyte Utricularia purpurea. Aquat.
344		<i>Bot.</i> 5 , 209-216 (1978).
345	89.	J. E. Titus, W. H. Stone, Photosynthetic response of two submersed macrophytes to
346		dissolved inorganic carbon concentration and pH. Limnol. Oceanogr. 27, 151-160 (1982).

S. Loczy, R. Carignan, D. Planas, The role of roots in carbon uptake by the submersed
macrophytes *Myriophyllum spicatum*, *Vallisneria americana*, and *Heteranthera dubia*. *Hydrobiol.* 98, 3-7 (1983).

351

352 ACKNOWLEDGEMENTS

We thank L Adamec for providing data on *Oenanthe aquatica*, Tropica Aquarium Plants for the
generous supply of tropical aquatic plants, and K Murphy for sharing the species list of plants
with a submerged life form. We acknowledge the constructive suggestions by CM Duarte, H
Lambers and HH Bruun.

Funding: L.L.I was funded by the Carlsberg Foundation (CF17-0155 and CF18-0062). L.B.-S.
was funded by the Aage V. Jensen Foundation. D.G was funded by the Polish National Agency
for Academic Exchange (PPN/BEK/2018/1/00401) and K.S.-J. was funded by the Carlsberg
Foundation (grant CF14-0136).

- 362
- 363 Author contributions: L.L.I., A.W., L.B-S., S.C.M., K. S.-J. and O. P. designed the study,
- 364 framed the research questions, and wrote the manuscript, with input from the working group
- 365 (A.B.H., J.A., A.B-P., P.B., P.A.C., F.E., T.F., J.H., T.S.J, S.J.M., T.R., L.S. and O.V.). L.L.I.
- analyzed the data and prepared the figures. A.B.H and O.P. performed the pH-drift experiments
- and together with A.W. searched the literature for bicarbonate uptake in aquatic plants. A.W.,
- L.L.I., and L.B-S. assembled the data for the global analysis. F.E., L.B-S, L.S., S.C.M., S.J.M,
- 369 J.A., and T.F. assembled the site-specific lake data and the site-specific stream data was
- 370 assembled by A. B.-P., P.B., P.A.C., D.G., K.S.-J., T.R, T.S.J., and O.V., A.W., L.L.I., and L. B-
- 371 S. prepared the site-specific data for further analysis.

- **Competing interests:** The authors declare no competing interests.

- **Data availability:** All R scripts and cleaned datasets used for this analysis are available at the
- 376 Dryad Digital Repository.

Fig. 1

Bicarbonate use in submerged freshwater plant communities.

(A) likelihood of observing a bicarbonate user vs a CO₂ user in streams (n=172, red) and lakes (n=791, blue); (**B** and **C**), modeled odds of observing a bicarbonate user vs a CO₂ user as a function of bicarbonate (**B**) and CO_2 (**C**) concentrations. Values > 1indicate a higher likelihood (A) or increase in likelihood (**B** and **C**) of observing a bicarbonate user vs a CO₂ user with a one unit increase in bicarbonate (**B**) and CO₂ concentrations (C). The dotted vertical lines show mean estimates and shaded areas the 95% confidence limits around the mean.

413

- 414

CO2 users bicarbonate users

- 415
- Fig. 2 416

417 Global relationship between bicarbonate and the proportion of bicarbonate users in

freshwater plants. (A) Proportion of bicarbonate using species across 52 plant ecoregions. Grey 418

419 areas indicate regions where information on bicarbonate use in local plants is not available. (B)

- Relationship between mean bicarbonate concentration in plant regions and frequency of 420
- 421 bicarbonate users. The line represents the mean proportion of bicarbonate users. (C) Density
- 422 plots of bicarbonate preferences for bicarbonate users (n = 57) and obligate CO₂ users (n = 72).
- 423 The central horizontal black line represents the mean and the boxes indicate the 95% confidence
- 424 intervals around the mean.
- 425
- 426

- 427
- 428 429 **Fig. 3**
- 430 Steep gradients in bicarbonate concentrations and spatial separation in species distribution
- 431 in the British Isles. Distribution of two pondweed species with contrasting bicarbonate use in
- 432 the British Isles. *Potamogeton polygonifolius* (obligate CO₂ user, black triangles) is found in
- 433 areas with lower bicarbonate concentrations compared to *Potamogeton crispus* (bicarbonate user,
- 434 white circles). The top left insert shows the density distribution of the two species across

- 435 bicarbonate concentrations. Bicarbonate concentrations are from the global bicarbonate map
- 436 (Fig. S2) and species data were extracted from the geo-referenced plant occurrences (15).
- 437

438 Supplementary Materials

- 439 Materials and Methods (15).
- 440 References (*34-90*).
- 441 Fig. S1 Site-specific observations of bicarbonate use.
- 442 Fig. S2 Global bicarbonate map.
- 443 Fig. S3 The probability of observing bicarbonate use in a species at 963 study sites.
- 444 Fig. S4 Overview of *in situ* lake bicarbonate measurements.
- 445 Fig. S5 Variable importance plot of the Random Forest modelling global bicarbonate446 concentrations.
- 447 Fig. S6 Partial dependence plots of the eight variables used to model global bicarbonate448 concentrations.
- Fig. S7 Histogram of taxonomic distinctness for 1000 random subsamples of a fixed number of
 131 species drawn from a common species pool.
- 451 Table S1 List of freshwater angiosperms and their trait of inorganic carbon use.
- 452
- 453

Supplementary Materials for

Catchment properties and the photosynthetic trait composition of freshwater plant communities

P Iversen, L. L., Winkel, A., Baastrup-Spohr, L., Hinke, A. B., Alahuhta, J., Baattrup-Pedersen, A.,
Birk, S., Brodersen, P., Chambers, P A., Ecke, F., Feldmann, T., Gebler, D., Heino, J., Jespersen, T
S., Moe, S J., Riis, T, Sass, L., Vestergaard, O., Maberly, S C., Sand-Jensen, K., Pedersen, O.

Correspondence to: opedersen@bio.ku.dk, ksandjensen@bio.ku.dk or scm@ceh.ac.uk

This PDF file includes:

Materials and Methods Figs. S1 to S7 Table S1

Other Supplementary Materials for this manuscript include the following:

Data S1 All R scripts and cleaned datasets used for this analysis are available at the Dryad Digital Repository.

Materials and Methods

Traits of inorganic carbon use in aquatic plants

Information on species ability to use bicarbonate was collected from the literature and *ex-situ* pH drift experiments. A comprehensive scientific literature search was conducted in order to identify and collect data on inorganic carbon use of aquatic angiosperms, resulting in the identification of 104 species with validated information. Nomenclature follows a *sensu* plant list: www.theplantlist.org.

Tropical plant species for experiments were received from an aquatic plant nursery (Tropica Aquarium plants, Egå, Denmark). To ensure expression of bicarbonate use in species capable of doing so, plants were acclimated for 14 days in water with a high bicarbonate concentration (2 mM HCO₃) under air equilibrium of CO₂ (~20 µM CO₂) in a temperature controlled room (20 °C). To ensure temperature stability, each aquarium was equipped with a heating element and temperature was increased to 23 °C (\pm 1). Temperature was logged using a HOBO temperature/light sensor (HOBO Pendant, Onset Computer, Bourne, USA). The light regime was 12 h-light/12 h-darkness, with an average photon irradiance of 350 μ mol photons m⁻² s⁻¹ (PAR) provided by fluorescent tubes (Luminux cool daylight 39 W/865 HO, Osram GmbH, Munich, Germany). Nine individual plants of each species were divided into three 30 L aquaria (three plants in each). The medium was a modified Smart & Barko (34) solution with 75% KHCO₃ and 25% NaHCO₃ to ensure adequate potassium concentration. The medium was changed twice a week. When possible, plants were kept in the pots with stone wool in which they had been grown by the producer. When this was not possible, dependent on the plant morphology, plants were either planted in sand (0.6-1 mm grain size) or weighed down using a ceramic ring. pH drift experiments were used to identify the ability of plant species to use bicarbonate as a source of inorganic carbon (35). The pH drift experiment relies on the fact that any carbon taken up by a plant results in an increase in pH without influencing alkalinity. If pH increases to more than 9.4, the species is classified as a bicarbonate user as almost no CO_2 is available (< 1 μ M at 20 °C and with an alkalinity of 1 meq. L^{-1}) and it is inferred that HCO₃⁻ is being used as a source of inorganic carbon.

Leaf segments weighing 60 mg (\pm 5 mg) fresh mass were taken from the youngest fully developed leaf and cleared of any present epiphytes. The incubation medium was the same as that to which the plants had been acclimated (modified Smart & Barko solution, 2 mM HCO₃⁻). Oxygen concentration was reduced to 20% of air equilibrium by bubbling with N₂ to avoid photorespiration due to high O₂ concentration from photosynthesis. Twenty-five ml glass vials, containing two glass beads to ensure stirring, were used to incubate leaf tissue. Vials with leaves were mounted on a vertically rotating wheel in a temperature controlled water bath at 25 °C for 17 hours with an average photon irradiance of 555 µmol photons m⁻² s⁻¹ (Phillips Master, TL-D, 18W/840, Phillips, AE Eindhoven, Holland) measured with a 4 π sensor (US-SQS/L, Walz GmbH, Effeltrich, Germany). After incubation, pH was measured with a pH electrode (403-M8_s7/120. Rfill 9811, Mettler Toledo, Glostrup, Denmark; PHM 92, Radiometer, Brønshøj, Denmark).

A global bicarbonate map

The global distribution of bicarbonate was estimated from existing global maps of runoff accumulated freshwater alkalinity (19) and soil pH in water (36) (Fig. S2). This analytical

approach was chosen in order to match site-specific plant observations to local bicarbonate concentrations. Given the heterogeneous distribution of specific habitats for each of our study species, we expected that local bicarbonate concentration would be the product of downstream routing of alkalinity through the watershed, and that local deviations from these accumulations would have been caused by local soil properties (37). Based on one layer of accumulated alkalinity (19) and seven layers of soil pH in water (cross section of standard depths 0, 5, 15, 30, 60, 100 and 200 cm; (36), we modelled 1806 site-specific measures of bicarbonate (gathered from a global dataset; see Fig. S4). Given that bicarbonate typically accounts for >95% of alkalinity in water (6), we used site-specific alkalinity as a proxy for bicarbonate concentration. The 1806 in situ bicarbonate concentrations were derived from two data sources: The GEMSTAT database (www.gemstat.org) and the WISE4 database of the European Environmental Agency (https://www.eea.europa.eu/data-and-maps/data/waterbase-waterquality). Following a previous study (6), we removed unrealistically high alkalinity values (> 5meq. L^{-1}) and calculated mean alkalinity per site. The global map of runoff accumulated freshwater alkalinity (19) slightly underestimates high values of alkalinity, because it did not account for concentrating mechanisms such as evaporation. To prevent violating the premises of input data for the new bicarbonate map (Fig. S2), we excluded alkalinity values of more than 5 meq. L⁻¹ from the site-specific data prior to analyses. Finally, we calculated mean values per site for the subsequent analyses.

We used random forest models to model site-specific bicarbonate concentrations. Random forest is a nonparametric, machine learning regression tree combining individual decision trees (in this case, 500 trees) into a single ensemble model capable of fitting complex relationships with high predictive performance (38). Our random forest model was built using empirical bicarbonate measures as the response variable (to be modelled) and the corresponding values of the eight global layers as predicting variables. Each random forest model was run with a fixed set of 500 trees and a flexible number of predictors tried at each node (value set to the number of predictors divided by three). Consistency in error rates was visually inspected by plotting error rates against the number of trees in the ensemble. Across all models, the error rate stabilized between 50 and 100 trees. Model performance was evaluated by randomly splitting the 1806 measures into a training set (75%) and a test set (25%). The training data were used to build the model and the test data as an "out-of-bag" sample to compare observed and predicted bicarbonate values. From 1000 repetitions, a mean Pearson product moment correlation (ppmc) coefficient between observed and predicted bicarbonate was calculated for random forest models built on the runoff accumulated alkalinity layer, the seven pH soil maps, and a combination of all layers. The random forest model built on all eight layers produced the highest concordance between observed and predicted bicarbonate values (mean ppmc 0.73, Fig. S2B) supporting the initial inclusion of both accumulated runoff alkalinity and soil pH in the model. Alkalinity and lower levels of soil pH had the highest contribution to the model (Fig. S5) increasing with increasing bicarbonate concentrations (Fig. S6). Using the global coverage of the alkalinity and 7 soil pH maps, and the random forest model, global measures of bicarbonate were predicted at a 1/16 degree spatial resolution reflecting the highest common resolution of the input data (Fig. S2A).

The global occurrence of bicarbonate users

Following recent global plant trait censuses (39), we used the world geographical scheme for recording plant distributions (TDWG; 1) to map the occurrence of all 131 study species. For each

studied species, we compiled occurrence data for the 52 subcontinental regions of TDWG extracted from the World Checklist of Selected Plant Families (<u>http://apps.kew.org/wcsp/</u>), supplemented with data from the Germplasm Resources Information Network (<u>https://www.ars-grin.gov</u>). We updated these occurrences with geo-referenced records from the Global Biodiversity Information Facility (GBIF; <u>http://gbif.org</u> [downloaded 3rd November 2016]). From a raw set of GBIF records, we removed non-geo-referenced and overlapping records within species, as well as obvious outliers (e.g. records from botanical gardens), creating a final dataset of 1,017,608 geo-referenced records. From these we calculated average bicarbonate values for each species based on a spatial overlay between plant records and the bicarbonate map (Fig. S2A). We evaluated differences in average bicarbonate preferences between bicarbonate users and obligate CO₂ users in a Gaussian linear contrast model.

The spatial extent of bicarbonate users vs obligate CO₂ users was analyzed by calculating the proportion of bicarbonate users in 52 TDWG regions. When present, the relationship between the proportion of bicarbonate users and mean bicarbonate concentration (estimated from the global bicarbonate map) in climate regions was analyzed via a beta regression model (*38*) by a logit link, with bicarbonate concentration as a linear predictor and the frequency of species using bicarbonate as the response variable. Statistical significance was evaluated by inspecting the 95% confidence estimates of the slope parameter in the regression model.

From a collective dataset of 963 sites (Fig. S1), we used site-specific observations of our 131 studied species to explore how the presence of bicarbonate user species were affected by local variations in CO_2 and bicarbonate availability. The site-specific data originates from regional and national surveys of aquatic plants and water chemistry (pH and alkalinity) in lakes (40-42) and streams (43-45) that were also monitored for water chemistry variables. Site-specific CO_2 concentrations were calculated based on alkalinity, pH and temperature according to (46). Site-specific temperatures were extracted from a high resolution (30 arc sec) land surface climate model (47) as mean temperature in the warmest quarter.

While increasing bicarbonate has been shown to increase the proportion of bicarbonate users in lakes (26), a similarly strong positive pattern has not been found in streams (43). In contrast, studies in both streams and lakes have shown that increasing CO₂ concentration positively affects the presence of obligate CO₂ users (and thus potentially decreasing the proportion of bicarbonate users) independently of bicarbonate concentration (13,48). From this, we predicted that on a large spatial scale, the probability of observing a bicarbonate user increases logarithmically with an increase in bicarbonate concentration and decreases logarithmically with an increase in bicarbonate and obligate CO₂ users across the 963 sites (having removed two sites with alkalinity measurements below zero).

A multivariable logistic regression model was created, containing interactions between i) habitat type (stream or lake) and bicarbonate concentration; and ii) habitat type and CO_2 concentration as explanatory variables. These parameter interactions were used to test, on a log-odds scale, for differences in the effects of bicarbonate and CO_2 concentrations on the probability of observing a species with bicarbonate use (do the observed species utilize bicarbonate or not). Initial model runs indicated the presence of spatial autocorrelation. Thus, we accounted for residual patterns of

spatial autocorrelation by adding a two dimensional spherical spline based on geographic coordinates in the model (49). Based on Moran's I autocorrelation coefficient of the residual outputs, the final model did not show any indications of spatial autocorrelation (observed Moran's I = -0.0026, Null expectation = -0.0001, P-value = 0.12). Statistical significance in the final model was evaluated by inspecting the 95% confidence estimates of the slope parameter in the regression model. Any significant interaction parameters would suggest different response to CO_2 or bicarbonate gradients between lakes and streams (16). Parameter estimates for lakes and streams (as shown in Fig. 1) were derived from the full model estimates (Fig. S3) and shown as odds and change in odds (Fig. 1).

The 131 species with information about their bicarbonate use represent about 10% of the 1297 species known to have a predominantly fully submerged life stage (16), species list provided by Kevin Murphy. Upscaling the results of this study would require the 131 species to consist of a random sample from the phylogenetic tree of plants. We tested this assumption by comparing our sample from the global list of 1297 species. Owing to lack of a true phylogeny of all aquatic plants of the world, we used taxonomic hierarchies as a proxy for phylogenetic relationships; this approach has been used in several studies dealing with phylogenetic diversity (e.g., 50,51). We used Taxonomic Distinctness (TD), measuring the taxonomic distances between species in an assemblage, as a proxy for phylogenetic diversity (52). We used equal branch lengths and four taxonomic levels for the calculation of taxonomic distances between species: genus, family, order, and class for all of the 1297 species. Following Clarke & Warwick (52), we compared the observed TD with the values expected by randomly sampling 131 species from the entire species pool of 1297. Accordance between our observed TD and the random estimates indicates that the species included in our study represent a random taxonomic sample of the entire species pool. The observed TD of our 131 study species (82.7) did not differ from what would be expected by randomly selecting 131 species from the species pool (95% quantiles from 1000 simulations = 82.0-86.5, Fig. S7).

Site-specific observations of bicarbonate use. Spatial distribution of 963 sites used to explore how the presence of species able to use bicarbonate was affected by local variations in CO_2 and bicarbonate concentration. Red dots represent lakes (n=791) and blue dots represent streams (n=172).

Global bicarbonate map. (A) Global bicarbonate map with 300×300 meter resolution modeled from bicarbonate data in 1806 lakes (obtained from GEMSTAT database (<u>www.gemstat.org</u>)) and 7 layers of soil pH using a random forest model. (B) Pearson product moment correlation coefficient of observed *vs* predicted bicarbonate using 3 different models. (C) Concentration of predicted bicarbonate as a function of observed bicarbonate.

The probability of observing bicarbonate use in a species at 963 study sites. Parameter estimates from a multiple logistic regression model, including habitat type (stream or lake), log(bicarbonate), and log(CO₂) as explanatory variables. The dots represent means of log (odds) (for the intercepts) and change in log(odds) (for the slope parameters). Lines depict the 95% confidence limits of the mean.

Fig. S4.

Overview of *in situ* **lake bicarbonate measurements.** Data taken from the GEMSTAT database (<u>www.gemstat.org</u>) and the European Environmental Agency (<u>https://www.eea.europa.eu</u>) provided bicarbonate data from six continents.

Fig. S5.

Variable importance plot of the Random Forest modelling global bicarbonate concentrations. Total increase in node purities from splitting on the variable, averaged over all trees and derived from residual sum of squares. The variables are ordered top-to-bottom as mostto-least important.

Partial dependence plots of the eight variables used to model global bicarbonate concentrations. Each plot represents the unique effect of the eight explanatory variables on global bicarbonate concentration. Relationships are derived form a collective Random Forest model (see Methods above).

Fig. S7.

Histogram of taxonomic distinctness for 1000 random subsamples of a fixed number of 131 species drawn from a common species pool. The orange shaded areas depict the 95% quantiles of the 1000 random samples. The vertical dotted line shows the taxonomic distinctness value of the 131 study species.

Table S1.

Species	Trait	Source
Aldrovanda vesiculosa	CO_2	(53)
Alternanthera reineckii	CO_2	Original data
Aponogeton crispus	CO_2	Original data
Aponogeton longiplumulosus	CO_2	Original data
Aponogeton madagascariensis	CO_2	Original data
Aponogeton ulvaceus	CO_2	Original data
Berula erecta	CO_2	(54)
Blyxa aubertii	CO_2	Original data
Blyxa echinosperma	CO_2	(55)
Blyxa japonica	CO_2	(55)
Cabomba caroliniana	CO_2	(55,56)
Cabomba furcata	CO_2	Original data
Callitriche cophocarpa	CO_2	(5,54)
Callitriche hamulata	CO_2	(53)
Callitriche hermaphroditica	HCO ₃ -	(57)
Callitriche longipedunculata	CO_2	(58)
Callitriche obtusangula	CO_2	Original data
Callitriche platycarpa	CO_2	Original data
Callitriche stagnalis	CO_2	(54)
Callitriche truncata	HCO ₃ -	Original data
Callitriche verna	CO_2	Original data
Ceratophyllum demersum	HCO ₃ -	(4,55)
Crassula aquatica	CO_2	(58)
Crassula helmsii	CO_2	(59)
Cryptocoryne albida	CO_2	Original data
Cryptocoryne crispatula	HCO ₃ -	Original data
Cryptocoryne usteriana	CO_2	Original data
Deinostema violacea	CO_2	(55)
Echinodorus grisebachii	CO_2	Original data
Echinodorus palifolius	HCO ₃ -	Original data
Egeria densa	HCO ₃ -	(55)
Egeria najas	HCO3 ⁻	(60)

Elatine californica	CO_2	(58)
Eleocharis acicularis	CO_2	(58)
Elodea canadensis	HCO ₃ -	(61-63)
Elodea nuttallii	HCO ₃ -	(55,64)
Eriocaulon aquaticum	HCO ₃ -	(65,66)
Eriocaulon decangulare	CO_2	(67)
Eriocaulon setaceum	CO_2	Original data
Gratiola aurea	CO_2	(65)
Helanthium tenellum	CO_2	Original data
Hippuris vulgaris	CO_2	(35)
Hydrilla verticillata	HCO ₃ -	(55,68,69)
Hygrophila corymbosa	CO_2	Original data
Hygrophila polysperma	HCO ₃ -	(70)
Isolepis fluitans	CO_2	(71)
Juncus bulbosus	CO_2	(71)
Lagarosiphon madagascariensis	CO_2	Original data
Lagarosiphon major	HCO ₃ -	(61)
Lemna trisulca	HCO ₃ -	(71)
Limnophila polystachya	CO_2	Original data
Limnophila sessiliflora	HCO ₃ -	(55,70)
Littorella uniflora	CO_2	(35,66)
Lobelia dortmanna	CO_2	(66,72)
Ludwigia repens	CO_2	(73)
Luronium natans	HCO ₃ -	(74)
Marsilea vestita	CO_2	(58)
Myosotis laxa	CO_2	(54)
Myosotis scorpioides	CO_2	(54)
Myriophyllum alterniflorum	HCO ₃ -	(4,35)
Myriophyllum aquaticum	CO_2	(55)
Myriophyllum salsugineum	CO_2	(75)
Myriophyllum spicatum	HCO ₃ -	(5,35,55)
Myriophyllum tuberculatum	HCO ₃ -	Original data
Myriophyllum verticillatum	CO_2	(5)
Najas flexilis	CO_2	(76)

Najas indica	HCO3 ⁻	Original data
Najas marina	HCO ₃ -	(55)
Najas oguraensis	HCO3 ⁻	(55)
Nechamandra alternifolia	HCO ₃ -	(55)
Nuphar lutea	CO_2	(35)
Nuphar pumila	CO_2	(55)
Nymphaea lotus	CO_2	Original data
Nymphoides hydrophylla	HCO ₃ -	Original data
Oenanthe aquatica	CO_2	Original data
Ottelia acuminata	HCO ₃ -	(77)
Ottelia alismoides	HCO ₃ -	(77)
Pogostemon helferi	HCO ₃ -	Original data
Potamogeton acutifolius	CO_2	Original data
Potamogeton berchtoldii	HCO ₃ -	(71)
Potamogeton crispus	HCO ₃ -	(14,35,55)
Potamogeton distinctus	HCO ₃ -	(78)
Potamogeton friesii	HCO ₃ -	(54)
Potamogeton fryeri	CO_2	(71,78)
Potamogeton gramineus	HCO ₃ -	(79)
Potamogeton lucens	HCO ₃ -	(55,73)
Potamogeton maackianus	HCO ₃ -	(78)
Potamogeton natans	CO_2	(35,55,80)
Potamogeton nodosus	HCO ₃ -	(78)
Potamogeton obtusifolius	HCO ₃ -	Original data
Potamogeton oxyphyllus	HCO ₃ -	(35,55)
Potamogeton pectinatus	HCO ₃ -	(54,55)
Potamogeton perfoliatus	HCO ₃ -	(35,54,55)
Potamogeton polygonifolius	CO_2	(35,81)
Potamogeton pusillus	HCO ₃ -	(55,71)
Potamogeton schweinfurthii	HCO ₃ -	(82)
Potamogeton x angustifolius	HCO ₃ -	(14,35)
Ranunculus aquatilis	HCO ₃ -	(14,35)
Ranunculus circinatus	HCO ₃ -	(54)
Ranunculus flabellaris	CO_2	(83)

Ranunculus fluitans	HCO ₃ -	(80)
Ranunculus peltatus	HCO ₃ -	(14,63)
Ranunculus penicillatus	HCO ₃ -	(71,84)
Ranunculus trichophyllus	HCO ₃ -	(54)
Rotala rotundifolia	CO_2	Original data
Rotala wallichii	CO_2	Original data
Sagittaria sagittifolia	CO_2	(54)
Sagittaria subulata	CO_2	Original data
Schoenoplectus subterminalis	HCO ₃ -	(85)
Schoenoplectus torreyi	HCO ₃ -	(71)
Sparganium emersum	CO_2	(5,54)
Sparganium erectum	CO_2	(54)
Stratiotes aloides	HCO ₃ -	(76,86)
Stuckenia filiformis	HCO ₃ -	(35)
Stuckenia pectinata	HCO ₃ -	(54)
Subularia aquatica	CO_2	(66,71)
Utricularia australis	CO_2	(53,87)
Utricularia gibba	CO_2	Original data
Utricularia graminifolia	CO_2	Original data
Utricularia intermedia	CO_2	(71)
Utricularia minor	CO_2	(53,87)
Utricularia purpurea	CO_2	(35,88)
Utricularia vulgaris	CO_2	(76)
Vallisneria americana	HCO ₃ -	(71,89,90)
Vallisneria nana	CO_2	Original data
Vallisneria natans	HCO ₃ -	(55)
Vallisneria spinulosa	HCO ₃ -	(55)
Vallisneria spiralis	HCO ₃ -	(5)
Veronica anagallis-aquatica	CO_2	(54)
Veronica beccabunga	CO_2	(54)
Zannichellia palustris	HCO ₃ -	(71)

List of freshwater angiosperms and their trait of inorganic carbon use. Species names were corroborated using The Plant List <u>http://www.theplantlist.org/</u>

Data S1. (separate file)

All R scripts and cleaned datasets used for this analysis are available at the Dryad Digital Repository.