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a b s t r a c t 

Cyanobacteria blooms in lakes and reservoirs currently threaten water security and affect the ecosystem 

services provided by these freshwater ecosystems, such as drinking water and recreational use. Climate 

change is expected to further exacerbate the situation in the future because of higher temperatures, ex- 

tended droughts and nutrient enrichment, due to urbanisation and intensified agriculture. Nutrients are 

considered critical for the deterioration of water quality in lakes and reservoirs and responsible for the 

widespread increase in cyanobacterial blooms. We model the response of cyanobacteria abundance to 

variations in lake Total Phosphorus (TP) and Total Nitrogen (TN) concentrations, using a data set from 

822 Northern European lakes. We divide lakes in ten groups based on their physico-chemical character- 

istics, following a modified lake typology defined for the Water Framework Directive (WFD). This clas- 

sification is used in a Bayesian hierarchical linear model which employs a probabilistic approach, trans- 

forming uncertainty into probability thresholds. The hierarchical model is used to calculate probabilities 

of cyanobacterial concentrations exceeding risk levels for human health associated with the use of lakes 

for recreational activities, as defined by the World Health Organization (WHO). Different TN and TP con- 

centration combinations result in variable probabilities to exceed pre-set thresholds. Our objective is to 

support lake managers in estimating acceptable nutrient concentrations and allow them to identify ac- 

tions that would achieve compliance of cyanobacterial abundance risk levels with a given confidence 

level. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Freshwater is inextricably linked to human well-being and

ocio-economic development, while this dependence is a key con-

ition for the sustainable management of freshwater resources. As

he planet’s population increases and, as a consequence, urbani-

ation and agriculture intensify, freshwater security is threatened

y the growing demand for food production, electrical power gen-

ration, industrial processes and human consumption. On top of

hat, water quality generally suffers from continuous degradation

n many regions, and as a result, freshwater ecosystems often be-

ome inhospitable habitats for living organisms ( UNEP, 2016 ). This

rend is expected to worsen in the near future and next genera-

ions are likely to face significant adverse impacts on water quan-
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ity and quality, especially under the threat of climate change. In

ecent years, global concern has evolved into specific action plans

or water management; the United Nations released an agenda

efining sustainable development goals (SDGs), where water man-

gement holds a prominent position calling for actions by all coun-

ries to increase the access to clean drinking water and sanitation

SDG 6) and to conserve and use oceans seas and marine resources

ustainably (SDG 14) ( UN 2019 ). Furthermore, since 20 0 0, the Eu-

opean Water Framework Directive (WFD) has transformed water

anagement in Europe, by bringing aquatic ecology to the fore-

ront of decisions ( Hering et al., 2010 ). Traditionally, the only com-

on biological indicator of lake quality assessment and manage-

ent was Chlorophyl-a (Chl-a), but following the implementation

f the WFD, cyanobacteria abundance has become an additional in-

icator required for assessment of ecological status for European

akes ( Birk et al., 2012 ). 

Harmful cyanobacterial blooms pose a serious risk to freshwa-

er quality, affecting human and animal health. Due to the tox-

ns released by many bloom-forming species, water becomes inap-

ropriate to serve human needs such as drinking water, fisheries
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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and recreation ( Charmichael et al., 2016 ; Lévesque et al., 2014 ;

Ibelings et al., 2016 ). Scientific research has paid considerable at-

tention to predicting the frequency and extent of cyanobacterial

bloom events, suggesting possible interventions to mitigate these

phenomena ( Jewett et al., 2008 ; Tromas et al., 2017 ). However,

predicting cyanobacterial abundance remains a challenge: even

though there is good understanding of the key factors that drive

and influence cyanobacterial dynamics, there is still high variabil-

ity, making it difficult to accurately predict the abundance. In addi-

tion, availability of data exhibits great variation among freshwater

ecosystems, making it difficult to come up with robust method-

ologies that would be applicable to a wide range of lake types

( Richardson et al., 2018 ). 

A common practice for bridging the gap of insufficient data

in lake ecosystems is to “borrow” data from lakes with similar

characteristics and in this way expand the sample size towards

strengthening statistical analyses. However, when predictive mod-

els are applied to lakes categorized to groups following the as-

sumption of homogeneity, the results usually fail to prove realis-

tic, since homogeneity within a lake group is a weak assumption

( Malve and Qian, 2006 ). Beaulieu et al. (2013) used a 10 0 0 lake

dataset containing data from lakes across the United States and im-

plemented multiple linear regression analyses to predict cyanobac-

terial biomass on the whole dataset and on subsets of lake type

according to depth and to whether the ecosystem is natural or a

reservoir. The findings of this analysis indicated that predictions

improved when lakes were categorized to groups; however, the

overall low predictive strength advocates that the grouping as-

sumption alone lacks satisfactory results. In another study con-

ducted by Richardson et al. (2018) , the response of cyanobacteria

to multiple stressors by using linear regression mixed effect mod-

els varied greatly with lake type, resulting in the conclusion that a

“one-size fits-all” approach is inappropriate towards understanding

and managing the risks of harmful algal blooms. 

Carvalho et al. (2013) , used quantile regression modelling to

quantify the relationship between TP concentrations and cyanobac-

teria, using a data set from 800 European lakes. The analysis

showed that TP cannot be singled out as the dominant factor re-

garding cyanobacteria concentrations in lakes; rather, TP quantile

modelling can be used to define the lake maximum cyanobac-

teria abundance, but only in relation to TP. Even though it is

widely recognized that total nitrogen (TN) also plays a key role in

cyanobacteria, previous modelling effort s of cyanobacteria in large

datasets focus only on TP in their models ( Richardson et al., 2018 ;

Carvalho et al., 2013 ; Obenour et al., 2014 ). In their work based

on mesocosm experiments, Richardson et al. (2019) include both

TN and TP but only in combination, not separately, so the interac-

tion with cyanobacteria cannot be analysed. Our work addresses

this gap, as it uses both TN and TP separately as predictors for

cyanobacteria. 

Bayesian hierarchical models can combine prior and data-driven

knowledge both from multiple groups of lakes and from lakes of

the same group in order to make predictions for a single lake be-

longing to a specific group. In other words, the hierarchical ap-

proach moves one step further from the classical “grouping” ap-

proach by considering the effects of the ensemble of lakes on

predictions. The Bayesian modelling framework, which is based

on probability distributions is very suitable for the analysis of

cyanobacteria blooms, as they are rare events with high uncer-

tainty. The method has been used extensively in the past with

convincing results (e.g., Malve and Qian, 2006 ; Shimoda and

Archonditsis, 2015 ; Shimoda et al., 2016 ; Cheng et al., 2009 ;

Obenour et al., 2014 ; Stow et al., 2014 ); however, the method has

not been used for prediction of cyanobacteria abundance. Specifi-

cally, Malve and Qian (2006) have developed a similar modelling

framework, using TN and TP as predictors, but they only predicted
hl-a. This research is to our knowledge novel because it models

yanobacteria using a Bayesian hierarchical model with both TN

nd TP as predictors; herein, we build upon the work of Malve and

olleagues, expanding it for cyanobacteria. 

In this article, we use a multi-lake data set of 822 North-

rn European lakes and evaluate trends in Cyanobacteria Biomass

CBB) using nutrient concentrations as predictors fitted with a

on-parametric Generalised Additive Model (GAM) curve and a

OWESS curve. Then, by dividing lakes into 10 groups with dif-

erent physico-chemical characteristics, we implement a linear

ayesian hierarchical modelling framework and obtain posterior

robability simulations that exhibit a strong predictive modelling

erformance overall that varies depending on lake group and num-

er of observations. Results are implemented for analyzing lake

BB concentrations according to the three risk levels associated

o human health for recreational activities (Low—CBB ≤ 2mg/L;

edium—CBB between 2 and 10 mg/L and High—CBB > 10mg/L),

s defined by the World Health Organization (2006) . Finally, ex-

eedance probability response surfaces are produced for a range of

utrient concentrations for the WHO risk levels, showing that the

ayesian hierarchical modelling framework can be used for lake

utrophication management, by setting nutrient targets to sustain

pecific CBB thresholds with an associated exceedance risk level. 

. Materials and methods 

.1. Dataset 

Our dataset consists of a range of biological (cyanobacteria

iomass, Chl-a), physical (latitude, altitude, surface area, mean-

ax depth, mean-max air temperature) and chemical (total ni-

rogen, total phosphorus, total nitrogen to total phosphorus ra-

io, alkalinity type and humic type) features of several Northern

uropean lakes, extracted from the central database of the EU-

unded project WISER ( Moe et al., 2013 ). WISER was launched in

009 and for three years, 25 European Institutions representing

6 countries have addressed the assessment and management of

ivers, lakes, transitional and coastal waters in Europe. Although

he dataset originally contained observations for several features

or 1851 lakes, it was unbalanced in terms of the number of moni-

ored features per lake. Thus, after a thorough screening procedure

e ended up with a subset of 822 lakes containing data for all

he aforementioned variables. In other words, even though initially

e had data for 1851 lakes for a large number of variables, we

nded up with a compact dataset of 822 lakes containing data for

 smaller group of variables—our goal was to create a dataset with

eatures that would be covered by all lakes. The final subset con-

ains lakes from six Northern European countries, namely UK, Den-

ark, Norway, Sweden, Finland and Lithuania. The total observa-

ions are 4,175 from May to October and from 1980 to 2009. How-

ver, observations are unevenly distributed among years, months

nd lakes. A total of 164 lakes have only a single observation, while

he rest of the lakes range between 2 and 55 observations. Ap-

roximately 30% of the observations are from August while 27%,

8%, 13%, 9% and 3% are from July, June, May, September and Oc-

ober, respectively. In Fig. 1 the spatial distribution of all lakes in

he dataset across the European map is shown. More details on the

ata set are included in Mellios et al. (2020) . 

.2. Categorizing lakes into groups 

Lake-type-specific models rely on the simple assumption that

akes belonging to a specific group are likely to exhibit similar be-

avior and response to changes in intra and extra-lake conditions.

nder this context, the response of CBB to stressors is expected

o follow a similar behavior among lakes of the same type. In this
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Fig. 1. Spatial distribution of lakes contained in the dataset. 
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ork, grouping of lakes into types should ideally follow the lake

ypology defined for the Water Framework Directive (WFD) im-

lementation within the Nordic Geographic Intercalibration Group

 Poikane, 2009 ); Solheim et al. (2019) have developed a simpli-

ed version of the original typology—new broad typology—that has

een used as guidance for developing lake groups in this article.

ichardson et al. (2018) used a modified lake typology that in-

luded a classification in 18 lake types, which was eventually ag-

regated to 8 lake types to match data availability in each cate-

ory. Malve and Qian (2006) used the Geomorphological Typol-

gy of Finnish Lakes specified by the Finnish Environment Insti-

ute, since their analysis included solely Finnish lakes. According

o this typology, lakes are grouped into different types based on

heir geographical and natural characteristics ( Pilke et al., 2002 ). 

The WFD Nordic lake typology is strongly influenced by the

innish lake typology, so our grouping was an adaptation of the

atter to include criteria that match our dataset, which has a high

roportion of Finnish lakes. Two typology variables, altitude and

lkalinity or calcium level (siliceous vs. calcareous), are not in-

luded in the Finnish lake typology and were also left out from

ur analysis. The reason for excluding altitude was that only a few

akes had higher altitude, so this would result in the formation of
Table 1 

The adapted Geomorphological typology of lakes specified by

depth (m), “color” to humic type (mg Pt/L) and “SA” to surfa

Lake Group Explanation 

1 very shallow, non-humic 

2 very shallow, humic 

3 very shallow, very humic 

4 shallow, non-humic 

5 shallow, humic 

6 shallow, very humic 

7 large, non-humic 

8 large, humic 

9 medium/small, deep, non-humic 

10 medium/small, deep, humic 
nbalanced datasets under each lake category. Regarding Calcium

evel/alkalinity, such data were not available in our dataset for all

akes. Besides, alkalinity tends to co-vary with TP (although not

or all lake groups) and its role has been investigated in other pa-

ers, namely in Richardson et al. (2018) and Carvalho et al. (2013) .

ere, we wanted to focus more on other factors, such as humic

ype, since there is evidence that there is a negative effect of hu-

ic level for cyanobacteria ( Ptacnik et al., 2008 ; Richardson et al.,

018 ). 

The chosen lake classification is very similar to the one used

y Malve and Qian (2006) and included 10 groups, modifying lake

ypes in order to fit the availability of data in our dataset. As spec-

fied in Table 1 , the grouping of lakes was determined by mean

epth, humic type and surface area. Mean depth was already dis-

retized in the WISER dataset in three levels, namely “very shal-

ow”, “shallow” and “deep”. In terms of humic type, the classes fol- 

owed a similar discretization, namely “non- humic”, “humic” and

very humic”, indicated by the color level. In terms of lake size,

he WISER typology included four classes according to lake surface

rea, namely “very small”, “small”, “medium” and “large”. In our

ataset, we retained “large” and grouped “medium”, “small” and 

very small” under a single category named “medium/small” and
 the Finnish Environmental Agency. “D” refers to mean 

ce area (km 

2 ). 

Characteristics 

D = 0 - 3 m, Color < 30 

D = 0 - 3 m, Color > 30 and < 90 

D = 0 - 3 m, Color > 90 

D = 3 – 15 m, Color < 30 

D = 3 - 15 m, Color > 30 and < 90 

D = 3 - 15 m, Color > 90 

SA > 10 km 

2 , Color < 30 

SA > 10 km 

2 , Color > 30 and < 90 

SA = 0 – 10 km 

2 , D > 15 m, Color < 30 

SA = 0–10 km 

2 , D > 15 m, Color > 30 and < 90 
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Fig. 2. CART analysis tree plot partitioned with TP and TN concentrations ( μg/L). 
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ended up with two size categories. This grouping was done in or-

der to reflect the types of lakes included in our dataset; a critical

mass of data is ensured in each type with this grouping. 

2.3. Identifying the best predictors of CBB 

Linear correlation analysis indicated high correlation between

CBB and Chl-a (r = 0.52) ( Mellios et al., 2020 ), but Chl-a was ex-

cluded from the explanatory variables because Chl-a and cyanobac-

teria are not independent, since cyanobacteria is a proportion of

the total phytoplankton biomass, of which Chl-a is an indica-

tor. Maximum air temperature and maximum depth show high

collinearity with mean temperature and mean depth respectively;

thus, they were also excluded since their effects on CBB are not

distinct. To determine which of the other variables (latitude, alti-

tude, surface area, mean depth, TN, TP, TN/TP and mean temper-

ature) explain most of the variation of the response variable CBB,

a classification and regression tree (CART) analysis was conducted.

By satisfying the criterion to diminish the prediction error, the best

tree model was chosen, which is illustrated in Fig. 2 . The CART

analysis procedure was done in the programming environment R

version 3.6.2 ( https://www.R-project.org/ ), by using the “mvpart ”

package ( De’ath, 2007 ). 

As indicated by the CART analysis results, when considering

the whole dataset including all ten lake groups, TP plays the

most significant role towards the prediction of CBB, while TN

is influential only for the subset of samples (n = 276) where

TP is larger than 89.75 μg/L. These findings are in accordance

with Downing et al. (2001) who analyzed data from 99 tem-

perate lakes and showed that cyanobacteria blooms are more

strongly correlated with variation in TP and TN than the ratio

of TN/TP. Watson et al. (1997) performed regression analyses and

showed that the mean summer biomass of cyanobacteria is signif-

icantly and positively related to TP, for different nutrient ranges.

Håkanson et al. (2007) used linear regression to model a trans-

formed form of cyanobacteria concentration (CBB 

0.25 ) on log(TN)

and log(TP) and found significant correlations with R 

2 = 0.63 and

0.75, respectively and concluded that variations in TP rather than

TN seem to be more important to predict variations among sys-

tems in cyanobacteria. Following these results, TN and TP concen-

trations were selected as the best predictors of CBB and were used

to construct the Bayesian hierarchical linear regression model. The

advantage of including only two predictors is that the model is

simple, lean and flexible and easy to be applied. 
.4. Bayesian hierarchical linear regression model 

Bayesian methods are gaining ground in a wide range of sci-

ntific fields and especially in ecology, mainly due to their ability

o produce probabilistic-oriented inferences, which in many cases

utperform deterministic approaches. Since ecological modelling is

haracterized by high uncertainty due to the complex and many

imes unknown cause-effect relationships among variables, a prob-

bilistic approach that yields distributions of possible outcomes,

n essence, transforms uncertainty into probability thresholds. The

dvantage of Bayesian methods relies on their ability to combine

rior knowledge about model parameters with evidence from data

 Arhonditsis et al., 2006 ). They are well suited for analysis of mul-

ilevel models, showing: i) flexibility in specifying multilevel struc-

ures of parameters using priors, ii) ability to handle small sam-

les and model misspecification (overparameterization of the like-

ihood can be resolved with well-chosen priors), iii) explicit han-

ling of uncertainty and iv) intuitive and easy interpretation of re-

ults (credible interval versus confidence interval) ( Grzenda, 2015 ).

he hierarchical modelling approach implemented in this work is

hown below: 

 i jk ∼ N 

(
X βi j , τ

2 
)

(1)

 βi j = β0 ,i j + β1 ,i j ∗ T N i jk + β2 ,i j ∗ T P i jk (2)

i j ∼ N 

(
βi , σ

2 
i 

)
(3)

i ∼ N 

(
β, σ 2 

)
(4)

∼ N ( 0 , 10 0 0 0 ) (5)

i , σ ∼ gamma ( 0 . 001 , 0 . 001 ) (6)

= uni f ( 0 , 100 ) (7)

here, y ijk is the k th observed CBB value from lake j in group i.

 is the model matrix consisting of observed TN and TP values

rom lake j in group i, β ij = [ β0,ij , β1,ij , β2,ij ] is the lake-specific

inear regression model parameter vector which includes the in-

ercept ( β0,ij ) and the slopes for TN ( β1,ij ) and TP ( β2,ij ), τ
2 is the

odel error variance, β i = [ β0,i , β1,i , β2,i ] is the vector of model

arameter means for lake group i, σ 2 
i 

= [ σ 2 
0 ,i 

, σ 2 
1 ,i 

, σ 2 
2 ,i 

] is the vec-

or representing the variance of model parameters among lakes be-

onging to group i, while β = [ β0 , β1 , β2 ] and σ 2 = [ σ 2 
0 
, σ 2 

1 
, σ 2 

2 
]

re the means and variance among groups, respectively. 

The hierarchy of the specified model relies on the assump-

ion that each lake’s CBB values are modelled conditional on lake-

pecific model parameter values; the lake-specific model parame-

er values are modelled conditional on a common distribution rep-

esenting all group-specific lakes, the lake group-specific parame-

er values are modelled conditional on a common parameter dis-

ribution representing all groups; the ensemble of groups is mod-

lled conditional on a common distribution representing all lakes,

hile all lakes are in turn modelled conditional on representative

yperparameters for the whole population of lakes considered in

ur dataset. To be more specific, y ijk is conditionally normally dis-

ributed on X β ij and τ 2 , β ij are conditionally normally distributed

n β i , σ
2 
i 

, while β i is conditionally normally distributed on β

nd σ 2 . The non-informative prior distributions of β , τ , σ i and σ
hich represent the hyperparameters follow a normal distribution

 (0, 10 0 0 0) with mean 0 and variance 10,0 0 0, a uniform distri-

ution unif(0, 100) with lower (0) and upper (100) limits and a

amma distribution gamma(0.0 01, 0.0 01) with shape parameter k

0.001) and scale parameter θ (0.001), respectively. The hyperpa-

ameters of τ , σ i and σ are considered “vague” or non-informative

s there is no information about their distribution. 

https://www.R-project.org/
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Table 3 

Statistical analysis for the intercept for log(TN) and log(TP) GAM models. 

Intercept Estimate Std. Error t-value Pr( > |t|) 

CBB ~ s(TP) 0.64214 0.04682 13.71 < 2e-16 

CBB ~ s(TN) 0.64214 0.04854 13.23 < 2e-16 

Table 4 

Approximate significance of smooth terms. 

edf Ref.df F p-value R 2 (adj) Deviance explained 

s(TP) 8.255 8.821 110.2 < 2e-16 0.189 19% 

s(TN) 8.14 8.796 70.05 < 2e-16 0.128 13% 
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.5. Description of the modelling procedure 

The Bayesian hierarchical analysis was conducted with the Win-

UGS software ( Lunn et al., 20 0 0 ) which is a program for Bayesian

nalysis of complex statistical models using Markov Chain Monte

arlo (MCMC) techniques. In this study, the Metropolis algorithm

as used which is based on a symmetric normal proposal distri-

ution, whose standard deviation is turned over the first 40 0 0 it-

rations in order to get an acceptance rate of between 20% and

0% ( Lunn et al., 20 0 0 ). To run the constructed model, a chain

as produced and run for 10 0,0 0 0 iterations in order to let the

CMC simulation converge to the true posterior distribution. To

heck the convergence of the proposed model, we used the Hei-

elberger and Welch diagnostic, which is appropriate for the anal-

sis of individual chains, under the “BOA ” package in the program-

ing environment R, version 3.6.2 ( Smith, 2007 ). The advantage

f this diagnostic method is two-fold; it both estimates the num-

er of samples to be discarded as a burn-in sequence and it tests

or non-convergence. In our case, the burn-in period as indicated

y the convergence diagnostic tool was 50,0 0 0, while convergence

as succeeded over 10 0,0 0 0 iterations. In order to reduce autocor-

elation of the sample we took 1,250 samples for each unknown

arameter ( β ij , β i , σ
2 
i 

, σ 2 , τ 2 ) from the 50,0 0 0 remaining MCMC

terations by keeping the data of every 40 th iteration (thin = 40).

inally, we confirmed the accuracy of the posterior parameter val-

es by assuring that the MC error to the sample standard deviation

rror ratio for all parameters did not exceed the 5% limit, as pro-

osed by Spiegelhalter et al. (2002) . 

. Results and discussion 

.1. Data exploratory analysis 

In Table 2 and Fig. 3 , we show data statistics and boxplots of

he response and explanatory variables included in the analysis for

ll lake groups. Exploring the relationship between CBB and nu-

rients in each group, it is noticeable that this relationship varies

mong groups. In groups 1 to 3, mean CBB decreases as humic

evel increases, which is consistent with the finding that cyanobac-

eria dominate more often in clear lakes than in humic ones

 Ptacnik et al., 2008 ). Lake depth (groups 9 and 10) seems to play

 determinant role in minimizing cyanobacteria abundance, which

s in line with several studies ( Bakker and Hilt, 2015 ; Sharma et al.,

011 ). However, no clear pattern can be detected between the rela-

ionship of CBB and nutrients, even though higher mean TN and TP

alues result in higher CBB values for the most part. This is proba-

ly related to the variable carrying capacity (maximum abundance)

f lakes for cyanobacteria and to the nutrient that is limiting in

ach lake type; thus, even though phosphorus is often considered

he limiting nutrient in lakes ( Richardson et al., 2018 ), nitrogen can

lso play a key role ( Beaulieu et al., 2013 ). 
Table 2 

Number of lakes, number of observations, mean ( ± standard devia

Lake Group 

Number 

of lakes Obs. Mean CBB (mg/

1 45 248 3.022 ( ±8.422) 

2 74 340 2.360 ( ±6.652) 

3 24 86 0.135 ( ±0.801) 

4 208 1162 0.384 ( ±1.507) 

5 126 768 0.429 ( ±2.716) 

6 31 153 0.428 ( ±1.584) 

7 97 340 0.082 ( ±0.337) 

8 110 464 0.351 ( ±2.367) 

9 91 515 0.152 ( ±0.835) 

10 16 99 0.074 ( ±0.321) 
Some of the basic properties of the data for all lakes are shown

n Fig. 4 (a) and (b), where we show a scatter plot of the rela-

ionships of CBB vs. log(TP) and log(TN) for all lakes fitted with

 non-parametric Generalised Additive Model (GAM) curve, along

ith the 5 and 95% Confidence Intervals. Statistical analyses for

oth curves are shown in Tables 3 and 4 , respectively. In Table 3 ,

he intercept estimate and standard errors are very similar for

oth TP and TN, signifying that if either variable were zero, the

odel would predict the same value of 0.6421 mg/L for CBB. In

erms of the significance of the smooth terms ( Table 4 ), again

oth variables have similar results, with TP performing better,

ith 19% of deviance explained as opposed to 13% for TN. This

s consistent with our CART analysis that showed that TP plays

he most significant role towards the prediction of CBB, while

N is influential only for a subset of samples. This result is also

onsistent with other research works, e.g. Hamilton et al. (2016) ,

øndergaard et al. (2017) and Moss et al. (2013) . The p-values

 Table 4 ) are very small in both cases for intercepts and smooth

erms, showing that the data is sufficient to recognize that the

moothed relationship between CBB and TN and TP explains the

ata better than assuming that CBB is independent of TN and TP

intercept-only model). 

To further explore the relationship between CBB and both TN

nd TP, we perform a LOWESS curve-fitting analysis. Here, CBB is

redicted using two explanatory variables, i.e. CBB ~ s(TP, TN) and

he 3D scatter plot with the predicted surface is shown in Fig. 5 (a),

hile the corresponding contour plot is shown in Fig. 5 (b). The

odel does not predict peak CBB concentrations for the combi-

ation of the highest TN and TP concentrations, but rather for

elatively low TP concentrations (in the order of 200 μg/L) and

edium/low TN concentrations (in the order of 2,300 μg/L). This

ignifies the fact that, depending on the concentrations, there is TN

nd TP limitation and lakes reach maximum abundance at those

N and TP concentrations. The model fails to capture most of the

igh CBB values, since peak CBB values in the order of 15 mg/L

re predicted, while peak observed values are in the 70s. This

s expected however, since model predictions are based on the
tion) of observed CBB, TN, and TP, within the lake groups. 

L) Mean TN ( μg/L) Mean TP ( μg/L) 

915.519 ( ±662.166) 67.474 ( ±98.128) 

1401.567 ( ±1338.741) 95.345 ( ±129.138) 

636.035 ( ±189.824) 27.421 ( ±11.578) 

688.353 ( ±769.757) 24.710 ( ±87.993) 

533.188 ( ±335.010) 20.012 ( ±26.187) 

594.749 ( ±330.709) 31.867 ( ±33.195) 

308.321 ( ±180.910) 8.686 ( ±8.998) 

548.891 ( ±343.360) 18.737 ( ±22.352) 

518.285 ( ±689.939) 14.249 ( ±31.071) 

578.359 ( ±416.881) 10.543 ( ±7.964) 
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Fig. 3. Box-plots for all the lake groups: (a) CBB, (b) TN, and (c) TP. 
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l  

R  
hole CBB dataset—a skewed distribution with many zero values,

s shown in Figure 3 (a). Statistics of the analysis are shown in

ig. 5 ; a relatively low R 

2 is obtained (similar to what has been

bserved in the literature, i.e Beaulieu et al., 2013 ; Carvalho et al.,

013 ; Chirico et al., 2020 ), but it is improved from the individual

BB vs. TN and CBB vs. TP plots ( Table 4 ), proving that the capa-

ility of prediction of CBB using these advanced smoothing models

s limited and predictions have relatively low reliability. 

.2. Linear hierarchical modelling and model fit 

Having explored the potential to predict cyanobacteria with

onlinear relationships, we proceed with a linear hierarchical

odel, to take advantage of the simplicity and flexibility of lin-

ar models. Linear regression is used, even though cyanobacteria

esponse to the nutrient gradient is non-linear ( Fig. 4 ). Neverthe-

ess, linear models are still commonly used in ecology, since non-

inear models tend to become complicated and require the pre-

efinition of parameters by the user, such as defining the maxi-

um of the curve, or the point where the concavity and/or con-

exity of the curve begins ( Carvalho et al., 2013 ); this way, there

xists a potential to introduce error by predefining the results.

ith skewed distributions, the assumptions underlying regression

odels based on normal distribution are violated, so data trans-

ormation is commonly used. The Box-Cox procedure defines the

arameter λ that is used to choose the most suitable transforma-

ion for the dataset to achieve normality. For our dataset, λ was

lose to zero, so the suitable transformation would be logarithmic.

his is relatively common in ecology, since environmental variables

ake only positive values and the logarithm of these variables are

ikely to be normal and the resulting model is easy to interpret

 Qian, 2016 ). In this work, a log transformation did not prove use-

ul, first because the dataset is unbalanced and includes a large

umber of zero concentrations of CBB. Even when replacing zero

oncentrations with small numbers to avoid the conflict with the

og transformation, the retransformation of the log CBB variable

as problematic, because the exponential of the log-mean was not

he same as the mean concentration and model fit deteriorated,

hen compared to the untransformed dataset. In this case, the er-

or term ε cannot be ignored and needs to be included in the re-

ransformation of data, ultimately introducing a bias to the results

y the fixed multiplicative factor e ε . Even though using a bias cor-

ection factor is a possibility ( Sprugel, 1983 ), it is difficult to define

 formula for the standard error and the estimated mean of the

ependent variable ( Qian, 2016 ). Based on this analysis, we con-

ucted the modelling with untransformed data and obtained good

odel fits overall with hierarchical modelling. Log-transforming TN

nd TP in order to setup a linear-log model did not improve re-

ults; therefore, all variables were used untransformed. 

To assess hierarchical modelling fit in terms of both preci-

ion and accuracy, we compare predicted vs. observed CBB val-

es through scatter plots for all lake groups, as shown in Fig. 6 .

he circles represent the mean predicted values while the lower

nd upper limits of the red lines are the 10 th and 90 th percentiles.

n the last graph, we show simulated vs. observed for the whole

ataset (all lakes). At the value of 0.74, we see that R 

2 for all lakes

 Fig. 6 ) is remarkably improved when compared to the predictions

hat were reported for multiple linear regression for the same data

et in Mellios et al. (2020) (R 

2 = 0.33). Predictions are also greatly

mproved when compared to both non-parametric curve models

erformed (GAMS or LOWESS). Lake groups show variable accu-

acy and precision, with some groups performing impressively well

e.g., R 

2 = 0.87 for Group 8—large humic lakes; R 

2 = 0.85 for Group

—shallow very humic lakes and R 

2 = 0.81 for Group 1—very shal-

ow, non-humic lakes), while some groups performing poorly (e.g.,

 

2 = 0.15 for Group 10—medium/small, deep, humic lakes). It seems
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Fig. 4. Scatter plot of (a) CBB vs log(TN) and (b) CBB vs log(TP) with smoothing curves and 5% and 95% Confidence Interval curves using GAM. 

Fig. 5. CBB vs. TN and TP with LOWESS analysis: (a) 3D scatter plot and predicted surface and (b) associated contour plot. 
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hat the model drops in performance when the maximum ob-

erved CBB values in a group are small, i.e., less than 3 mg/L, as

s the case in group 10; the number of observations is also impor-

ant with the number of observations being inversely proportional

o model fit. 

The hierarchical model, even though it models the non-linear

esponse of CBB to nutrient concentrations linearly, has a great ad-

antage in the fact that while it fits different model parameters
or each lake, thus customizing the model to the specific lake data,

t also treats lakes within the same group as exchangeable. Essen-

ially, parameters of lakes in the same lake group are assumed to

ome from the same prior distributions, thereby pooling informa-

ion from similar lakes. As a result, this pooling of information re-

ults in reduced bias at lake-level, while model error variance is

educed as well. This method is superior especially for lakes that

eed to be managed for eutrophication but have no prior data
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Fig. 6. Scatter plots for mean predicted vs. observed CBB values (in mg/L) for the 10 lake groups and the whole set of lakes, produced by the linear Bayesian hierarchical 

model. Predicted values are shown on the y-axis and observed values on the x-axis. 
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Table 5 

The 50 th percentile posterior distribution parameters for the 10 lake groups. 

Lake Group β0 β1 β2 

1 -0.013400 0.003378 0.012380 

2 -0.022910 0.000209 0.022720 

3 0.000905 0.000305 0.002986 

4 -0.044540 0.000344 0.011540 

5 -0.011460 0.000605 0.003927 

6 -0.008862 -0.000054 0.014920 

7 -0.005495 -0.000001 0.006400 

8 -0.009015 0.000888 -0.012680 

9 -0.018710 -0.000043 0.009474 

10 0.000656 -0.000187 0.005845 
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a

o base management decisions on: The lake will be classified in

 group according to its characteristics and the group parameters

ill be used to model it. As more data are included, the lake model

ill improve by customising its model parameters and differentiat-

ng them from those of the group. However, during the phase that

o data exist, there will be an initial set of parameters to be used

uccessfully. 

.3. Posterior probabilities and exceedance probability surfaces 

In order to demonstrate how hierarchical models can be used

or the management of eutrophic lakes, we simulate posterior

robabilities of CBB for a range of TN and TP for an indicative

ist of four specific lakes coming from groups 1, 6, 8 and 10 (En-

elsholm Sø, Lillsjön, Päijänne and Gjersjøen, respectively). The

umber of observations for these lakes are 18, 3, 24 and 11, re-

pectively. The TN and TP ranges that are plotted are consistent

ith the corresponding observed concentrations for each lake. In

igs 7 (a), (d), (g) and (j), the resulting surface is presented for the

0 th percentile of the predictive distributions along with the scat-

er plots of observed values in a 3D format, showing the good-

ess of fit of the model. These surfaces were designed using the

osterior distribution parameters β ij ( β0,ij , β1,ij , β2,ij ) that are spe-

ific for each lake. In Figs 7 (b), (e), (h) and (k), we show the same

lots as before, but without the observed values scatter plot; this

ime we visualize two horizontal planes that correspond to the

hree distinct health risk levels (low—medium—high, with thresh-

lds at 2 and 10 mg/L), as defined by WHO, after converting cell

ounts into concentrations ( Mellios et al., 2020 ). From these pos-

erior probability surfaces, we can identify the combination of TN

nd TP concentrations that result in the 50 th percentile of CBB dis-

ribution being lower than 2 mg/L (below the bottom horizontal

lane—green color), being between 2 and 10 mg/L (between the

wo planes—yellow color) and being above 10 mg/L (above the

op horizontal plane—red color). Posterior probability surfaces are

hown for all four lakes, showing how successful hierarchical mod-

lling is in capturing the variability of CBB for a wide range of

akes and lake groups and multitude of observations. In Figs 7 (h)

nd (k), the predicted concentrations are below the 2 mg/L thresh-

ld; thus, no horizontal plane is shown. It should be noted here

hat even though for all groups, plots in the left and center panels

re identical, for groups 1, 6 and 10, the plots in the center panel

re rotated for better visualization of the 3-D surfaces. In the right

anels—Figs 7 (c), (f), (i) and (l)—we show the 3D posterior prob-

bility surface plots for the 50 th percentile of predictive distribu-

ions for each lake group, for TN and TP ranges consistent with

he corresponding observed concentrations for all lakes belonging

o each group. This way, we can see how hierarchical modelling

orks: In the absence of any data for a single lake, the predic-

ion probabilities would have to come from the lake group level in

hich the lake belongs—shown in Figs 7 (c), (f), (i) and (l). These

urfaces were designed using posterior distribution parameters β i 

 β0,i , β1,i , β2,i ) for each lake group. Naturally, as data from the lake

ecome available, hierarchical modelling greatly improves and pro-

ides more accurate predictions specific for each lake, as shown in

he center and left panels. 

Table 5 lists all posterior distribution parameters β i ( β0,i , β1,i ,

2,i ) for all ten lake groups. When comparing β1,i (the coefficient

f TN) and β2,i (the coefficient of TP), we see that for almost

ll lake groups, β2,i is positive and over one order of magnitude

reater than β1,i . Indeed, this result matches with the CART pre-

ented earlier, since it enforces that TP is the most influential, be-

ng the most important one strongly affecting CBB; TN is also im-

ortant but seems to play a secondary role. 

The Bayesian hierarchical model becomes a powerful frame-

ork when CBB standard exceedance probability response surfaces
re simulated. Such a surface can set nutrient criteria that can

e directly used under a risk assessment framework for eutrophic

ake management. Therefore, an exceedance probability response

or the 10 mg/L CBB threshold shows the range and combination

f TN and TP concentrations for which the predicted CBB has less

han a specific probability to exceed that threshold of 10 mg/L; this

s indicatively shown in Fig. 8 (a) for lake Engelsholm Sø (Group

), where x and y axes show nutrient concentrations and the z-

xis is the probability to exceed the 10mg/L threshold. In Fig. 8 (b)

nd 8(c), we show the contour diagram of the exceedance proba-

ility response surface for all percentiles, for the 2 mg/L and 10

g/L threshold, respectively. For a lake eutrophication manage-

ent scheme, the lake manager can identify the risk level that

s)he wants to operate under. If a 90% risk level is chosen, then

he combination of TN and TP concentrations that correspond to

he 90% line in Fig. 8 (b) and (c) signify the concentrations that

ive a 90% probability to exceed the 2 mg/L and 10 mg/L thresh-

lds, respectively. For a lower risk level, lower TN and TP concen-

rations are required. Alternatively, if TN and TP concentrations in

he lake are measured under a monitoring scheme, or if criteria

or TN and TP are set by the European Water Framework Directive

 Poikane et al., 2019 ) or a relevant authority, the lake manager can

ave an estimate of what the risk level is to exceed the 2 or 10

g/L threshold. To show how this might work, in Fig. 8 (b) and (c),

e plot the observed combinations of TN and TP concentrations for

ake Engelsholm Sø along with the corresponding CBB concentra-

ions. With red font, we show the CBB concentrations that exceed

he preset thresholds and we see that indeed all high CBB concen-

rations appear in the area that is above the 97.5% exceedance line.

nly a few high CBBs are found on the risk level lines 25% and

igher, while there is no “red font” in the “safe” area under the

.5% risk line. 

With posterior predictive simulations of the Bayesian hierarchi-

al approach, similar curves can be drawn for any threshold, pro-

iding a flexible and robust framework of probabilistic risk assess-

ent for various management decisions and associated nutrient

oncentrations that is relatively easy to use and understand. To

ur knowledge, these contour diagrams of the exceedance prob-

bility response surface for a given threshold of CBB for all per-

entiles and for the full range of nutrient concentrations in a single

raph as a result of Bayesian hierarchical modelling has not been

one before and is a novel and powerful methodology for lake eu-

rophication management. The Lake Load Response model, also a

ayesian hierarchical model, was developed into an online tool for

ake managers ( http://lakestate.vyh.fi) and can be used e.g. for pre-

iction of Chl-a and phytoplankton biomass from TN and TP loads.

LR is a useful lake management tool that allows the calculation

f estimates of the amount of loading reduction needed to achieve

ood water quality in a lake. In a similar way, our model can form

he basis of a tool for predicting cyanobacteria biomass from TN

nd TP concentrations for different lake groups. 

http://lakestate.vyh.fi
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Fig. 7. 3D posterior probability surface plots for the 50 th percentile of the predictive distributions along with scatter plots of observed values (left panels) for four different 

lakes, produced by the linear Bayesian hierarchical model. In the center panel of each row, the same surface is shown along with two horizontal planes corresponding to 

the two thresholds that define low-medium and high-risk levels. In the right panel for each row, the 50 th percentile of the predictive distributions are shown for each 

corresponding lake group, for comparison purposes. It should be noted that to achieve best visualization, surface plots in the middle panel of lake groups 1, 6 and 10 have 

been rotated in order to provide a different perspective and facilitate visualization of observed values (points). 
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Fig. 8. (a) Exceedance probability response surface for the 10 mg/L CBB threshold versus TN and TP for Lake Enghelsholm Sø; (b) corresponding contour plot showing TN 

and TP concentrations and associated risk of exceedance for CBB concentrations of 2 mg/L and (c) 10 mg/L. Observed TN-TP concentrations are plotted along with their 

corresponding CBB concentrations. CBB concentrations in red actually exceed preset thresholds of (b) 2 mg/L and (c) 10 mg/L. 
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4. Conclusions 

The Bayesian hierarchical linear regression model calculates

lake-specific probabilities of CBB concentrations to exceed the two

health risk levels for recreational use, under different TP and TN

concentrations. Enabling lake managers to define combinations of

TP and TN concentrations that will result in exceedance risk lev-

els for pre-defined thresholds appropriate for each ecosystem can

lead to optimal monitoring schemes and can minimize uncertainty

associated with each lake ecosystem. After compiling a large wa-

ter quality data set for a system of lakes with different charac-

teristics and typology divided into groups, competent authorities

can develop a monitoring strategy that will focus on lakes that

have the greatest risk at violating the thresholds and developing

cyanobacterial blooms. Thus, monitoring schemes become targeted

and efficient with maximum benefits for society. Using Bayesian

hierarchical modelling, lake managers can focus on lakes with sig-

nificant ecosystem services, including recreational quality and can

thus maximise the provision of these services. Categorizing lakes

in different types according to their characteristics allows a clear

generalization of lake responses, promotes our understanding of

lake cyanobacteria dynamics and enables lake managers to target

measures to minimize risks under climate change. Finally, a lake

with no data history can take advantage of the data series of other

lakes that belong to the same group and can follow a management

scheme that will be superior to a generalized scheme that would

be applicable to all lakes. 
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