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EDITOR'S NOTE:
This article is part of the special series “Applications of Bayesian Networks for Environmental Risk Assessment

and Management” and was generated from a session on the use of Bayesian networks (BNs) in environmental modeling and
assessment in 1 of 3 recent conferences: SETAC North America 2018 (Sacramento, CA, USA), SETAC Europe 2019 (Helsinki,
Finland), and European Geosciences Union 2019 (Vienna, Austria). The 3 sessions aimed at showing the state‐of‐the art and
new directions in the use of BN models in environmental assessment, focusing on ecotoxicology and water quality mod-
eling. This series aims at reflecting the broad applicability of BN methodology in environmental assessment across a range
of ecosystem types and scales, and discusses the relevance for environmental management.

ABSTRACT
The adverse outcome pathway (AOP) framework has gained international recognition as a systematic approach linking

mechanistic processes to toxicity endpoints. Nevertheless, successful implementation into risk assessments is still limited by
the lack of quantitative AOP models (qAOPs) and assessment of uncertainties. The few published qAOP models so far are
typically based on data‐demanding systems biology models. Here, we propose a less data‐demanding approach for
quantification of AOPs and AOP networks, based on regression modeling and Bayesian networks (BNs). We demonstrate this
approach with the proposed AOP #245, “Uncoupling of photophosphorylation leading to reduced ATP production
associated growth inhibition,” using a small experimental data set from exposure of Lemna minor to the pesticide
3,5‐dichlorophenol. The AOP‐BN reflects the network structure of AOP #245 containing 2 molecular initiating events (MIEs),
3 key events (KEs), and 1 adverse outcome (AO). First, for each dose–response and response–response (KE) relationship, we
quantify the causal relationship by Bayesian regression modeling. The regression models correspond to dose–response
functions commonly applied in ecotoxicology. Secondly, we apply the fitted regression models with associated uncertainty
to simulate 10 000 response values along the predictor gradient. Thirdly, we use the simulated values to parameterize the
conditional probability tables of the BN model. The quantified AOP‐BN model can be run in several directions: 1) prognostic
inference, run forward from the stressor node to predict the AO level; 2) diagnostic inference, run backward from the
AO node; and 3) omnidirectionally, run from the intermediate MIEs and/or KEs. Internal validation shows that the AOP‐BN
can obtain a high accuracy rate, when run is from intermediate nodes and when a low resolution is acceptable for the
AO. Although the performance of this AOP‐BN is limited by the small data set, our study demonstrates a proof‐of‐concept:
the combined use of Bayesian regression modeling and Bayesian network modeling for quantifying AOPs. Integr Environ
Assess Manag 2021;17:147–164. © 2020 The Authors. Integrated Environmental Assessment and Management published by
Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
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INTRODUCTION
The adverse outcome pathway (AOP) framework

(Ankley et al. 2010) has gained international recognition
as a systematic approach for capturing existing toxico-
logical knowledge to transparently link mechanistic data
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to apical toxicity endpoints. An AOP model typically
describes the causal linkages from a chemical stressor
through 3 types of events: 1) a molecular initiating event
(MIE) triggered by the stressor, 2) a series of measurable
biological responses termed “key events” (KEs), and
finally 3) 1 or more adverse outcomes (AOs), which are
specialized KEs of regulatory significance (Figure 1A).
The KEs are usually ordered by increasing level of bio-
logical organization, for example, from cells via tissue to
organs, whereas the AO is typically at the level of
the individual or even population (Kramer et al. 2011).
The causal relationships linking the events are termed
“key event relationships” (KERs), and are typically illus-
trated by arrows in graphical representations of AOPs
(Figure 1A).
During the last decade there has been a widespread

interest and rapid development in the AOP framework by
scientists involved in risk assessment both to human
health and to the environment (LaLone et al. 2017). The
AOP Knowledge Base (https://aopkb.oecd.org/) combines
all available information on AOP development through
4 different information systems. One of these platforms is
the AOPWiki (http://aopwiki.org), which holds descrip-
tions of more than 300 proposed AOPs, with status
ranging from “under development” to “adopted by the
[Organisation for Economic Co‐operation and Develop-
ment] OECD.” Although the AOPWiki is currently domi-
nated by AOPs relevant for human health, the number of

AOPs relevant to other animals and plants is increasing,
and the number of taxonomic groups is expanding.

Successful implementation into a regulatory framework is
still limited by the lack of quantitative models and assess-
ment of uncertainties associated with AOPs. Although many
AOPs may have immediate utility as tools for hazard iden-
tification, hypothesis‐driven testing, and prioritization, most
are not appropriate for quantitative risk assessment (Conolly
et al. 2017). A global horizon scanning exercise, which was
recently conducted to address the limitations of the AOP
framework in research and regulatory decision making,
identified quantification of AOPs as one of the main topical
areas (LaLone et al. 2017). Quantitative AOPs (qAOPs)
should define the relationships underlying transition from
1 KE to the next sufficiently well to allow quantitative pre-
diction of the probability or severity of the AO occurring for
a given activation of the MIE (Conolly et al. 2017). Taking
larger advantage of the quantitative nature of these AOPs is
considered a key step to further implement the AOP con-
cept into screening, prioritization, and hazard and ultimately
risk assessment (Garcia‐Reyero and Murphy 2018).

Although qAOPs can take many forms, a causal modeling
framework such as a Bayesian network (BN) (Carriger
et al. 2016) seems like a natural choice. A BN is a proba-
bilistic model, usually illustrated as a set of nodes (variables)
connected by arrows (causal relationships, alternatively as-
sociations) (Figure 1B). The variables are usually discretized
into a low number of states, either intervals or mutually

Integr Environ Assess Manag 2021:147–164 © 2020 The Authorswileyonlinelibrary.com/journal/ieam

Figure 1. Components of an adverse outcome pathway (AOP) (A). Conceptual model of an AOP‐BN (Bayesian network) for quantification of the tentative AOP
#245 (see Supplemental Data Figure S1 for more details) (B). The nodes are defined in Table 1. The numbered arrows identify the causal relationships defined in
Table 2. AOP= adverse outcome pathway; DCP= 3,5‐dichlorophenol; ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO=
lipid peroxidation; OXPHOS= oxidative phosphorylation; ROS= reactive oxygen species.
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exclusive categories. The links are quantified by conditional
probability tables (CPTs), which determine the probability
distribution of a node (the child node) for all combinations of
states of its parent nodes. Bayesian networks therefore allow
the propagation of uncertainty quantified throughout the
model (Sahlin et al. this issue). Adverse outcome pathways,
like BNs, cannot contain feedback loops and are therefore
acyclic directed graphs, according to graph theory (Zgheib
et al. 2019). More detailed descriptions of BNs are provided
by other papers in this special series (e.g., Sahlin et al. this
issue). Bayesian networks have been applied extensively in
environmental research and management, as reviewed by
Kaikkonen et al. (this issue). Many examples can be found in
fields such as fisheries management (Uusitalo et al. 2012;
Trifonova et al. 2017), water quality assessment (Varis and
Kuikka 1997; Borsuk et al. 2004; Moe et al. 2016; Hjerppe
et al. 2017), and more recently also in ecological risk as-
sessment and management (Hart and Pollino 2008; Helle
et al. 2015; Carriger and Barron 2020; Landis et al. 2020).
Nevertheless, BNs have still been used only rarely for the
development of quantitative AOPs, beyond a few recent
examples (Jaworska et al. 2015; Jeong et al. 2018; Burgoon
et al. 2019; Zgheib et al. 2019).
The examples of quantitative AOPs published so far are

based mainly on mechanistic models describing systems bi-
ology (e.g., Ananthasubramaniam et al. 2015; Miller et al. 2015;
Muller et al. 2015; Riedl et al. 2015; Battistoni et al. 2019;
Perkins, Ashauer et al. 2019; Perkins, Gayen et al. 2019). A
major challenge with this approach is the complexity of the
models and the high requirement for data for parametrization.
For example, the complete qAOP for renal toxicity based on
systems biology has 57 differential equations and 335 param-
eters (Zgheib et al. 2019). The amount of data required for the
calibration of such models is rarely available. Therefore, alter-
native approaches should be applied that make more efficient
use of the available data in combination with other knowledge.
In our view, a promising approach is the combined use of BN
models to represent the causal structure of an AOP and
Bayesian regression models for quantification of exposure–
effect relationships and their uncertainty.
An early example of integration of AOP components into

a BN can be found in the integrated testing strategy (ITS‐3)
for skin sensitization potency assessment (Jaworska
et al. 2015), a decision support system for a risk assessor
that provides quantitative weight of evidence and for-
mulates an adaptive testing strategy for a chemical. A dy-
namic BN was developed for quantification of AOP for
chronic kidney disease (Zgheib et al. 2019). In a recent ex-
ample from ecological risk assessment, AOP components
were implemented in a BN relative risk model with multiple
stressors (Landis et al. 2020). In all these examples, the
qAOP has consisted of a single chain with 1 or more KEs
organized in a sequence. However, chemical stressors may
affect more than 1 MIE or KE, and assessment scenarios
typically involve complex mixtures including chemical and
nonchemical stressors causing pathway perturbations that
interact with multiple MIEs or shared KEs and KERs, that

may culminate in 1 or more AOs (Perkins et al. 2011; LaLone
et al. 2017). The principles of AOP development within the
AOPWiki support construction of AOP networks from sim-
pler units of development (Knapen et al. 2018; Villeneuve
et al. 2018).
Bayesian networks are causal, directed, acyclic graphical

models (Kjærulff and Madsen 2008), and therefore have
optimal properties for implementation of qAOP networks.
Nevertheless, to our knowledge there are currently few ex-
amples of AOP networks quantified by BN models. These
are the AOP network predicting steatosis (abnormal re-
tention of lipids) of human cells (Burgoon et al. 2019) and
the AOP network describing the effect of Ag nanoparticles
on reproductive toxicity in a nematode (Jeong et al. 2018).
In these examples, however, the KEs were defined as sem-
iquantitative nodes, with respectively 2 states (true or false)
or 3 states (decrease or stable or increase).
In our study, we used a combination of Bayesian regression

analysis and BN modeling to quantify the links and un-
certainties of an AOP network, with all nodes discretized into
5 or more intervals. As a case study we have selected the
proposed AOP #245, “Uncoupling of photophosphorylation
leading to reduced ATP production associated growth in-
hibition” (https://aopwiki.org/aops/245). This AOP describes
the mechanistic linkage between respiratory and photosyn-
thesis inhibition and the adverse effect of growth inhibition in
the aquatic macrophyte Lemna minor (Xie et al. 2018). In es-
sence, these AOPs describe the causal relationship between
chemically induced inhibition of oxidative phosphorylation
(OXPHOS) and reduction in the activity of the electron trans-
port chain (ETR), as well as increase in reactive oxygen species
(ROS) formation and subsequent inhibition of photosystem II
activity (Fv/Fm). Both pathways are assumed to lead to in-
hibition of growth in L. minor (Figure 1B).
In the present paper, we will demonstrate how an AOP—

or even an AOP network—can be quantified on the basis of
a small experimental data set, by combining observations
with expert knowledge and statistical modeling in a Baye-
sian framework. This relatively simple approach can serve as
a proof‐of‐concept for quantification of AOPs and AOP
networks based on limited data sets.

METHODS

Data

The BN model is based on data from a laboratory
experiment (Supplemental Data Table S1) in which the
aquatic plant L. minor (duckweed) was exposed to the
pesticide 3,5‐dichlorophenol (DCP) (Xie et al. 2018).
3,5‐Dichlorophenol belongs to a diverse group of chlorinated
phenols, commonly used as pesticides, disinfectants, and as
chemical intermediates in the production of more complex
chemicals. Chlorophenols cause growth inhibition in primary
producers by disrupting energy metabolism, either by un-
coupling oxidative or photosynthetic phosphorylation through
inhibiting electron transport on inner membrane of mi-
tochondria and thylakoids (Escher et al. 1996).

Integr Environ Assess Manag 2021:147–164 © 2020 The AuthorsDOI: 10.1002/ieam.4348
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The measured variables from the experiment included as
response variables in the present study are listed in Table 1.
These variables were selected based on evidence that they
are part of the mechanisms of action for this class of
chemicals (Xie et al. 2018). The plant was exposed to DCP in
8 concentrations: 0, 0.5, 1, 1.5, 2, 3, 4, and 8mg/L. The
2 highest concentrations resulted in death of the plants;
therefore, some of the variables could not be measured for
these exposure levels (Supplemental Data Table S1). Each
response variable was measured in 3 repeated values at each
stressor level. This means that replication was not applied at
the level of the experimental units, but instead to repeated
measurements within each experimental unit. Therefore, the
repeated measurements cannot be considered proper
replicates. For example, at concentration 0mg/L, OXPHOS
value number 1 is not necessarily connected to ROS value
number 1, but equally to ROS values numbers 2 and 3. This is
a general problem for response–response relationships when
the different response variables are measured from different
experimental units. The handling of pseudoreplicates in
the statistical modeling is described in the section Bayesian
regression analysis and simulation.

Structure of the AOP‐BN

The proposed AOP #245 (Xie et al. 2018), which links the
mode of action (MoA) of the model respiratory and photo-
synthesis uncoupler DCP to AOs for L. minor, is illustrated in
Supplemental Data Figure S1. The present study suggests
that DCP displays both concentration‐dependent and
target‐specific MoAs that seem to be causally related. When
exposed to plants, DCP can disrupt energy transduction by
uncoupling oxidative and photosynthetic phosphorylation
through inhibiting the electron transport in the inner mem-
brane of mitochondria and thylakoids (Escher et al. 1996).
Additionally, the phenolic compounds have also been pro-
posed to inhibit electron transport in the chloroplast through
disruption of the photosystem I and disrupt photoreduction
of NADP+ (Ohad and Hirschberg 1992; Plekhanov and
Chemeris 2008). Some responses, including reduction in
OXPHOS, ETR, and fronds number, were observed at low
DCP concentration (0.5–1mg/L), which indicates that these
endpoints were directly associated with the respiratory and
photosynthesis uncoupling activity of DCP. Effects observed
at higher concentrations (>1mg/L), such as ROS formation,
lipid peroxidation (LPO), and modulation of PSII efficiency,
indicated that these endpoints were associated with ex-
cessive ROS formation and oxidative damage to key cellular
components in L. minor. Thus, the proposed network of
AOPs describes how low stressor levels can trigger the first
MIE (OXPHOS) in mitochondria (and representing 1 toxicity
pathway), while higher stressor levels can further trigger the
second MIE (ROS production) in chloroplasts (i.e., repre-
senting another toxicity pathway), given that higher stressor
levels also trigger ROS (Supplemental Data Figure S1).
The AOP‐BN model was implemented in the software

Netica version 6.04 (Norsys Software Corp., Vancouver,
Canada; http://www.norsys.com). The qualitative structure of

Integr Environ Assess Manag 2021:147–164 © 2020 The Authorswileyonlinelibrary.com/journal/ieam
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the AOP‐BN is a simplified version of the proposed AOP
(Figure 1B), including only the KEs for which measured re-
sponses were available from the experiment (Xie et al. 2018).
The AOP‐BN is a network consisting of 3 chains (i.e., path-
ways) with the same chemical stressor (DCP) and AO
(reduced fronds number). Both OXPHOS and ROS are de-
fined as MIEs, while the 3 variables ETR, Fv/Fm, and LPO are
all defined as KEs. An AOP by definition starts with an MIE
and should therefore be chemical agnostic (Ankley et al.
2010). In our study, however, a stressor gradient is needed to
evaluate the performance of the quantified AOP‐BN. We
have therefore included the stressor as the parent node in the
AOP‐BN, although the BN could also have been constructed
with the 2 MIEs as parent nodes.
The nodes of a BN are typically defined by a limited

number (3–10) of discrete states, which can be categorical or
intervals. In principle it is also possible to include continuous
variables (Qian and Miltner 2015; Moe et al. 2020). How-
ever, BN software packages that allow continuous variables
have requirements such as normal distribution (Kaikkonen
et al. this issue), which was not appropriate for the variables
in our study (Table 2). For example, assuming a normal
distribution might result in negative values for some of the
counts data. For this AOP‐BN, all variables were discretized
into 5 intervals, except for the stressor node, which had
10 intervals. The high number of stressor intervals was
chosen to make the BN more sensitive to changes along the
stressor gradient. Dose–response relationships typically
show a sigmoid response curve with a steep increase at
some intermediate dose range, which was expected to
occur at different ranges of the stressor gradient for
Pathway I versus Pathways IIa and IIb. For all other nodes,
to obtain a simple model structure and interpretation, we
limited the discretization to 5 intervals. A comparable
number of states, 3 to 6 intervals, were used in the BN

models by Jaworska et al. (2015) and by Landis et al. (2020).
A higher number of states would still be feasible with this
approach because the quantification of CPTs is based on a
high number of simulated values. The discretization was
defined by equidistant intervals within the range of each
node (Table 1). The DCP node had equidistant intervals at
logarithmic scale, given that the predictor variable is often
log‐transformed in dose–response models. For each node,
the range was set from approximately 67% of the minimum
observed value to 150% of the maximum observed value.
The causal relationships in a BN model are typically

displayed by arrows, which are technically termed “edges”
or “arcs.” In Figure 1B, only the node‐connecting arrows
numbered 1 and 4 (DCP→OXPHOS and DCP→ ROS)
represent true dose–response relationships, whereas the
remaining numbered arrows represent KERs, which are
also referred to as “response–response relationships”
(Doering et al. 2019). For simplicity, in the present paper,
we will refer to both dose–response and response–
response relationships as causal relationships. The arrows
of a BN are quantified by CPTs, which determine the
probability distribution of a child node conditionally on the
probability distribution of the parent nodes. The values of
a CPT thus correspond to parameters in process‐based
models. In our study, the CPTs were quantified by stat-
istical modeling. However, CPTs can also be quantified by
other methods, for example, by frequency distributions
(counts) of observations, by theory, or by expert judgment
(for examples, see Moe et al. 2020).
A limitation of traditional BN models is that they cannot

contain feedback loops, which are essential parts of bio-
logical systems. Feedback systems can occur at all levels of
biological organization, from homeostatic mechanisms op-
erating at the level of cells, tissues, or physiological proc-
esses, to density‐dependent regulation occurring at the

Integr Environ Assess Manag 2021:147–164 © 2020 The AuthorsDOI: 10.1002/ieam.4348

Table 2. Regression models for causal relationshipsa

Relationship nr
Predictor
variable

Response
variable

Response
variable type

Response variable
distribution

Response
function (drc)

Goodness of
fit (R2)

1 DCP OXPHOS Count Poisson LL.5 0.98

2 OXPHOS ETR Continuous,
positive

Truncated Gaussiana LL.4 0.89

3 ETR Fronds Count Poisson AR.3 0.96

4 DCP ROS Count Poisson LL.5 0.79

5 ROS Fv/Fm Ratio of 2 counts Binomial LL.4 0.65

6 Fv/Fm Fronds Count Poisson AR.3 0.97

7 ROS LPO Continuous,
positive

Truncated Gaussianb LL.4 0.68

8 LPO Fronds Count Poisson LL.4 0.52

DCP= 3,5‐dichlorophenol; ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO= lipid peroxidation; OXPHOS= oxidative
phosphorylation; ROS= reactive oxygen species.
a Response functions described for the R package drc (Ritz et al. 2015): LL.4= log‐logistic with 4 parameters; LL.5= log‐logistic with 5 parameters; AR.3=
shifted asymptotic regression (lower limit shifted from 0). For more information on the variables, see Table 1.
b Continuous distributions were truncated with a lower bound of 0 to prevent simulation of negative values for ETR and LPO.
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population level. More advanced dynamic BN models,
which have been developed only recently, can incorporate
feedback loops explicitly (Zgheib et al. 2019). Here we have
applied a more common approach: to let the modeled re-
lationship represent a steady‐state situation for a given
timeframe, with any feedback incorporated implicitly.

Bayesian regression analysis and simulation

In the present study, all CPTs were quantified by empirical
modeling of the relationships. The number of observations
(maximum 24 observations per relationship) was too low to
allow for quantification of CPTs based directly on the
counts. The counts would have been insufficient even if the
number of states per node were reduced to 3, resulting in
CPTs with 3 × 3= 9 values. A statistical modeling approach
can exploit the limited number of observations more effi-
ciently by combining expert knowledge or assumptions re-
garding the structure of the causal relationship with the
patterns and the variability in the data.
Our approach to quantifying the CPTs had 4 main steps.

For each causal relationship,

1) select an appropriate regression model based on ex-
plorative data analysis, model selection criteria, and/or
expert knowledge of the MoA (Table 2).

2) fit the regression model to the data to obtain parameter
estimates (with posterior probability distributions), which

can generate dose– or response–response curves
(Supplemental Data Figure S2).

3) use the fitted regression model to simulate a large
number of response values along a gradient of predictor
values, reflecting the uncertainty in the causal relation-
ship (Figure 2).

4) calculate the probability distributions for the CPT as the
frequency distribution of the simulated values (Figure 3).

Dose–response modeling is the state‐of‐the‐art method-
ology underlying modern risk assessment, with the log‐
logistic function as one of the most commonly used models
(Ritz 2010). In the present study, we chose to apply a
Bayesian regression model to quantify the relationships. The
differences between Bayesian statistics and the more
common frequentist or classical statistical modeling have
been described elsewhere (Kruschke et al. 2012; Baldwin
and Larson 2017; Sahlin et al. this issue). In brief, a fre-
quentist linear regression model will provide a parameter
estimate for the slope (and for the intercept) as a point value
with an interval (standard error). In contrast, a Bayesian
linear regression model will provide a predefined number of
simulated values for the slope (and for the intercept), from
which a probability distribution can be defined, as well
as a point value with standard error if desirable. In simple
cases like a linear regression, the frequentist and Bayesian
methods will typically provide very similar results. However,

Integr Environ Assess Manag 2021:147–164 © 2020 The Authorswileyonlinelibrary.com/journal/ieam

Figure 2. Observed and simulated causal relationships: dose–response (A, D) and response–response (B, C, E–H) relationships. Colored dots show the measured
values; the color code indicates the experimental treatment dose (see legend) in mg/L. The grey dots are simulated response values; a subset of 1000 out of
10 000 simulated values is displayed. For plots (A) and (D), the x‐axis is in log‐scale. The values DCP = 0mg/L are displayed at 0.05 mg/L. The vertical and
horizontal grid lines correspond to the intervals of the BN nodes (Table 1). The regression models are described in Table 2. AOP = adverse outcome
pathway; BN = Bayesian network; DCP = 3,5‐dichlorophenol; ETR = electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO = lipid
peroxidation; OXPHOS = oxidative phosphorylation; ROS = reactive oxygen species.
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the Bayesian method can in addition provide full probability
distributions for the fitted parameters, which was convenient
for quantifying the CPTs.
The functional form of regression models for the AOP‐BN

were based on the set of dose–response curve models
described by Ritz et al. (2015), and implemented in the
package drc of the open‐source statistical software R
(R Core Team 2020). Here, we assumed that the dose–
response functions most commonly used in ecotoxicology
would also be suitable for characterizing the KERs of the
AOP‐BN. Initial explorative analyses of the causal relation-
ships were carried out with frequentist regression in drc, to
take advantage of the built‐in functionality for model spec-
ification and selection. This explorative data analysis guided
our selection of dose–response function for each relation-
ship, which we subsequently implemented in a Bayesian
regression framework (Table 2).
All relationships (Table 2) were fitted to the data using

the R package brms (Bürkner 2017), which is a high‐level

interface to statistical inference language Stan (Carpenter
et al. 2017). This package allows Bayesian generalized
nonlinear multivariate multilevel models with full Bayesian
inference, supporting a wide range of distributions. For each
response variable, we selected a suitable distribution such
as Poisson for counts and binomial for ratios, with a corre-
sponding link function (Table 2). In this Bayesian regression
package (Bürkner 2017), specification of prior distributions
for parameters is flexible and encourages users to apply
prior distributions that reflect their beliefs. Weakly in-
formative priors were chosen for all parameters in our
models. In the Markov Chain Monte Carlo (MCMC) resam-
pling, 2000 samples were drawn from 4 independent chains,
with the first half of the samples being used for warmup,
resulting in 4000 posterior samples for each model. All
models converged satisfactorily with the convergence di-
agnostic R̂ values ≤1.01. The frequentist regression models
initially fitted with the drc package could in principle also
be used to simulate new response values, based on
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Figure 3. Examples of CPTs generated from simulated data, illustrating causal relationships with different levels of variability. Low variability: dose–response
relationship DCP→OXPHOS (Figure 2A) (A). Intermediate variability: key event relationship OXPHOS→ ETR (Figure 2B) (B). High variability: key event
relationship ROS→ Fv/Fm (Figure 2E) (C). The remaining CPTs are shown in Table S2. The CPTs shown here are transposed for alignment with the plots in
Figure 2. CPT= conditional probability tables; DCP= 3,5‐dichlorophenol; ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II;
OXPHOS= oxidative phosphorylation; ROS= reactive oxygen species.
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the estimated parameters and standard error. However, our
initial efforts with this simpler approach resulted in simu-
lated values that were not meaningful, such as negative
concentrations.
The fitted Bayesian regression models (Table 2) were

subsequently used for simulating a high number of response
values. For each model, the set of 3 to 5 parameters was
estimated as joint posterior probability distributions by their
respective Bayesian regression models. Each parameter set
drawn from this posterior distribution corresponds to a
predicted dose–response (or response–response) curve, as
illustrated by the 10 randomly drawn curves in Supplemental
Data Figure S2. In our approach, for every causal relation-
ship (Table 2), 10 000 data points were simulated from the
joint posterior distributions of parameters. For each pre-
dictor variable, a vector of artificial predictor values was
created, spanning from 67% to 150% of the reported range
of this variable, with a total vector length of 1000 equally
spaced values. For each of these predictor values, 10 pa-
rameter sets were drawn from the joint posterior dis-
tribution, resulting in 10 simulated response values.
The resulting simulated 10 000 response values were
subsequently used for the construction of the CPTs
(Supplemental Data Table S2).

Quantification of the AOP‐BN

The CPTs were parameterized by counting the simulated
values falling into each combination of parent and child
node states. For example, consider the relationship
DCP→OXPHOS (Figure 3A). For the first state of the pa-
rent node DCP (Figure 3A column [0, 0.1]), we let the
probability distribution of the child node OXPHOS corre-
spond to the frequency distribution across the grid cells
(percentages: 10%, 90%, 0%, 0%, 0%). The probability
distributions of the CPT illustrated in Figure 3A thereby
reflect variation in the simulated causal relationship in
Figure 2A. (Note that the tables in Figure 3 are arranged
to reflect the plots in Figure 2; CPTs may have different
layouts in different BN software packages).
For the simulation of causal relationships, the range of the

x‐axis was defined by an extension of the observed range of
values from 67% to 150% (described in the section Bayesian
regression analysis and simulation). The purpose of ex-
tending the range in both directions was to ensure a

sufficient range of y‐values for each relationship. For the
quantified AOP‐BN model, however, we selected a nar-
rower range for some of the variables, for example, after an
asymptotic response value was reached. In consequence,
the count of simulated values on which the CPTs are based
can differ among the relationships (see Figure 3B vs
Figure 3C), but the counts were always sufficiently high to
produce reasonable distributions.

The AO node—fronds number—was modeled as a
response variable to each of the 3 KEs separately
(Figures 2C, 2F, and 2H). Hence, the 3 resulting CPTs
needed to be integrated in some way. We tested 4 alter-
native combination rules with different weighting of the
3 pathways (Table 3). Rule 1 assumes equal weight of the
3 pathways, whereas Rules 2 and 3 assume lower weight of
Pathways IIa and IIb, which are initiated at higher stressor
levels than Pathway I. Rule 4 assumed all weight of Pathway
I, which was considered representative for the low stressor
level. The performance of the AOP‐BN was evaluated for all
4 alternative combination rules (see the section Model
evaluation and Supplemental Data Figure S3).

Although our approach to quantification of the AOP‐BN
was based on statistical modeling, expert judgment was
applied in different steps of this procedure; in particular, use
of more automated processes was constrained by lack of
data. In summary, expert judgment was applied as follows:

1) Selection of variables (Table 1): All variables with meas-
ured responses belonging to AOP #245 were included,
even if observations were missing for some of the treat-
ment levels.

2) Model selection (Table 2): The choice of regression
model for each causal relationship, including the dis-
tribution, priors, and other constraints, was based on
visual inspection of the data and understanding of the
underlying data‐generating processes. This judgment
was supplemented by the model selection functionality
in the R package drc, and evaluated by test statistics
(R2).

3) Discretization of variables (Table 1): Practical consid-
erations were applied in setting the range of each vari-
able (based on observed and simulated values), the
number of intervals (limited to 5 for all child nodes), and
the size of the intervals (equidistant).
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Table 3. Three alternative rules for combination of the 3 pathways (see Supplemental Data Figure S3), by differential weighting
of the 3 pathways

Pathway Nodes

Weights in combination of pathways

Rule 1 Rule 2 Rule 3 Rule 4

I OXPHOS→ ETR→ Fronds number 33% 50% 75% 100%

IIa ROS→ Fv/Fm→ Fronds number 33% 25% 12.5% 0%

IIb ROS→ LPO→ Fronds number 33% 25% 12.5% 0%

ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO= lipid peroxidation; OXPHOS= oxidative phosphorylation;
ROS= reactive oxygen species.
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4) Integration of the 3 pathways (Table 3): Best guesses
were applied in assigning weights to the pathways for the
4 alternative combination rules.

Model evaluation

The sensitivity of the AO node (fronds number) to each of
the parent nodes in the AOP‐BN was analyzed by the built‐
in function “Sensitivity to findings” in Netica. In environ-
mental modeling, sensitivity analysis can help to determine
which parts of the model affect the variables of interest the

most, thereby identifying which parts should be made with
caution and a high level of accuracy. The sensitivity is
measured as mutual information between the target node
and the parent node, which corresponds to the reduction in
entropy of the target node (measured in bits) due to a
finding (evidence) at the parent node (Table 3).
The performance of the AOP‐BN was evaluated by in-

ternal validation, that is, by using the same data source that
was used for quantifying the model (Sahlin et al. this issue).
External validation using a separate data set would be
preferable, but our data set (Supplemental Data Table S1)
was too small for splitting into a training and a testing set,
and a suitable independent data set was not available. In
our case, the accuracy of the model predictions was eval-
uated by comparing the predicted AO state at a given
stressor level with the observed AO state at the same
stressor level (Table 4, Supplemental Data Figure S4). This
test was carried out with the AOP‐BN instantiated from ei-
ther the stressor node, or the MIE nodes or the KE nodes.
Furthermore, the accuracy was evaluated for 3 alternative
levels of resolution of the AO node: 5, 3, or 2 states
(Table 5). For the 3‐states resolution, the 3 lowest intervals
(0–90 fronds) of the original 5 states were merged. For the
2‐states resolution, the 2 upper intervals were also merged
(90–160 fonds).

RESULTS AND DISCUSSION

Quantification of the AOP‐BN model

The quantified dose–response relationships and KERs
are displayed in Figure 2. The expected direction of a
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Table 4. Sensitivity analysis for the AOP‐BN with the 3 alternative
combination rules for the 3 pathways (Table 3)a

Node type Node

Mutual information

Rule 1 Rule 2 Rule 3 Rule 4

Stressor DCP 30.2% 32.8% 17.8% 30.3%

MIE OXPHOS 29.8% 33.3% 17.1% 32.8%

MIE ROS 31.5% 32.9% 19.4% 28.0%

KE ETR 29.2% 35.5% 15.4% 43.4%

KE Fv/Fm 30.1% 24.2% 11.7% 11.5%

KE LPO 21.2% 19.1% 29.3% 12.0%

AOP= adverse outcome pathway; BN= Bayesian network; DCP= 3,5‐
dichlorophenol; ETR= electron transfer rate; Fv/Fm=maximum quantum
yield of photosystem II; KE= key event; LPO= lipid peroxidation; MIE=
molecular initiating event; OXPHOS= oxidative phosphorylation; ROS=
reactive oxygen species.
a The values show the percentage of mutual information between the target
node “Fronds number” and the parent nodes. Higher values represent higher
sensitivity of the target node to the parent node.

Table 5. Accuracy rates of the predicted AO (reduction in fronds number) by the AOP‐BN model, using the 4 alternative combination rules
(Table 3) and 3 alternative resolutions of the AO node (5, 3, or 2 states)a

Resolution of
the AO node

Combination rule
(% weighting)

Accuracy

From stressor From MIE From KE

5 states Rule 1 (33; 33; 33) 37.5% 61.1% 61.1%

Rule 2 (50; 25; 25) 37.5% 61.1% 61.1%

Rule 3 (75; 12.5; 12.5) 37.5% 61.1% 61.1%

Rule 4 (100; 0; 0) 87.5% 77.8% 77.8%

3 states Rule 1 (33; 33; 33) 62.5% 77.8% 83.3%

Rule 2 (50; 25; 25) 62.5% 77.8% 83.3%

Rule 3 (75; 12.5; 12.5) 62.5% 83.3% 83.3%

Rule 4 (100; 0; 0) 100% 88.9% 88.9%

2 states Rule 1 (33; 33; 33) 100% 94.4% 100%

Rule 2 (50; 25; 25) 100% 94.4% 100%

Rule 3 (75; 12.5; 12.5) 100% 100% 94.4%

Rule 4 (100; 0; 0) 100% 88.9% 88.9%

AO= adverse outcome; BN= Bayesian network; KE= key event; MIE=molecular initiating event.
a The AOP‐BN is instantiated with evidence (Supplemental Data Table S1) for either the stressor node, the MIE nodes, or the KE nodes (cf. Figures 4 and 6). For
more details, see the section Evaluation.
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relationship is given by the combination of the up–down
arrows in the 2 connected nodes of the conceptual model
(Figure 1B): Two nodes with up–down arrows pointing in the
same direction represent a positive correlation. All esti-
mated relationships (Figure 2) displayed the expected di-
rection according to the conceptual model (Figure 1). For
example, relationship number 5 consists of 2 nodes with up–
down arrows pointing in opposite directions (increasing ROS
and decreasing Fv/Fm), which is consistent with the negative
relationship in Figure 2E. Conversely, relationship number
6 has 2 nodes with up–down arrows both pointing in the
same direction (decreasing Fv/Fm and decreasing fronds
number), which is consistent with the positive relationship in
Figure 2F.
The goodness‐of‐fit of each fitted function is measured by

the coefficient of determination, R2 (Table 2). For most of
the relationships, the displayed variation in simulated values
corresponds well with the variation of the measured values.
Nevertheless, there are cases in which the selected model
seems to overfit (Figure 2A, R2= 0.98) or underfit (Figure 2E,
R2= 0.65) to the data. These tendencies will be described in
more detail in the section AOP‐BN model prediction and
evaluation.
The 2 stressor–MIE relationships, DCP→OXPHOS

(Figure 2A) and DCP→ ROS (Figure 2D), displayed the least
variability of simulated values. These were both fitted with a
5‐parameter log‐logistic function with Poisson distribution.
For DCP→OXPHOS, the low variation of the simulations is
reflected in the sharp distributions of the corresponding
CPT (Figure 3A). In the case of DCP→ ROS, we would ex-
pect a higher variability of simulated values, to represent the
variation of the measured values (R2= 0.79). This suggests
that the selected regression model may not be able to fully
represent the variability when applied for simulation. This
was also the case with the KER of LPO→ Fronds (Figure 2H),
which had the lowest R2 (0.52).
The fitted KER displaying the highest variability was

ROS→ Fv/Fm (Figure 2E), with R2= 0.65. The relatively poor
fit is reflected in the wide probability distributions in the CPT
(Figure 3C). Because the response variable Fv/Fm is a ratio
of 2 counts, a binomial distribution was used for the vari-
able. Since the y‐axis has the range 0 to 1, the deviation in
absolute values is far lower than for most of the other vari-
ables (e.g., LPO, with the range 0–10). Two other dis-
tributions, beta and lognormal, were tested for the variable
Fv/Fm and found to result in overfitting or otherwise not
representing the variation in the measured values. Following
this expert judgment, we chose the binomial distribution
despite the high variation of simulated values.
The remaining relationships (Figures 2B, 2C, 2F, and 2G) all

had relatively high R2 values in the range 0.68 to 0.96. These
KERs were parameterized by 2 types of functions (Table 2):
4‐parameter log‐logistic with truncated Gaussian distribution
or shifted asymptotic regression with Poisson distribution.
Further testing of alternative model parametrizations might
further improve the goodness of fit for each relationship, at
least if a larger data set becomes available. For now, we

consider the selected models to be suitable for the purpose
of our AOP‐BN modeling exercise. All CPTs resulting from
these quantified relationships are available in Supplemental
Data Tables S2a to S2i. The large variation in fitted regression
curves (Supplemental Data Figure S2), goodness‐of‐fit scores
(Table 2), and patterns of simulated values (Figure 2) under-
lines the importance of carefully selecting and adapting a
regression model to each individual KER for the generation of
representative CPTs. A more straightforward approach could
be to implement a fitted dose–response equation directly in
the BN software. However, CPTs based directly on equations
would not be able to represent the specific patterns of vari-
ability in each of the causal relationships, in as detailed a
manner as the CPTs based on our combined estimation and
simulation approach (Figure 3).

The quantification of this AOP‐BN network must be
completed by integrating the 3 pathways into the 1 AO
node (Figure 1A). For this purpose, we constructed the
model with 4 alternative combination rules, assigning dif-
ferent weights to Pathway I relative to Pathways IIa and IIb
(Table 3). Combination Rule 4 (100% weight to Pathway I)
corresponds to a single linear AOP. The performance of the
AOP‐BN was evaluated by running the model from the
stressor, from the MIEs, and from the KERs, respectively
(Table 5; see next section).

AOP‐BN model prediction and evaluation

In the rest of this paper, the AOP‐BN version with com-
bination Rule 2 is used to describe the behavior of the qAOP
network, unless otherwise specified. A parameterized BN
model can be run in different directions by setting evidence
(i.e., set 100% probability of 1 state) for nodes in different
locations, as exemplified by Figures 4, 5, and 6. The AOP‐
BN can be run forward from the stressor node (prognostic,
Figure 4), backward from the AO node (diagnostic,
Figure 5), or omnidirectionally from any of the MIEs or KEs
(Figure 6). The BN software provides a mean value for each
node, calculated as the sum of each interval's midpoint
weighted by its probability. Inspection of these mean node
values can facilitate the comparison of predictions across
different scenarios. Nevertheless, the full posterior proba-
bility distributions are more relevant than the means for a
probabilistic risk assessment.

The prognostic model runs for 3 different stressor levels
(Figure 4) show that the increasing DCP concentration re-
sulted in decreased growth (fronds number) of L. minor, as
expected. The predictions from the prognostic model runs
can indicate the risk of exceeding a given AO threshold for
different levels of the stressor. For example, assume a
threshold of 90 fronds as a severe reduction of growth. At a
low level of DCP (0.22–0.37mg/L), the probability of a se-
verely AO (<90 fronds) is less than 12% (Figure 2). At the
intermediate DCP level (0.61–1mg/L), the probability of a
severely AO has increased to 31.3%, whereas at the high
DCP level (1.65–2.72mg/L), the probability is almost 97%.
Increases in DCP concentration beyond this interval did not
cause substantial further reduction of fronds number.
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The predicted mean fronds number ranged from 54 at
high stressor level to 109 at low stressor level, which is a
narrower range than the observed number of fronds:
average from 12 to 116 fronds for the range of DCP
concentration. The ability of the AOP‐BN to predict the

most profound AO (lowest fronds numbers) is limited by
the lack of observed KE values for the 2 highest stressor
concentrations (due to plant death). More generally, the
AOP‐BN's performance when run from the stressor node
is better for the intermediate stressor levels than for the
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Figure 4. Prognostic inference. The AOP‐BN model is run forwards from the stressor node with evidence set at different stressor concentration intervals: low (A),
intermediate (B), high (C). In each node, the states (intervals) are shown to the left, while the probabilities are shown to the right both as values and as bars. The
mean and standard deviation are given below each node. Evidence entered to a node is indicated by thin lines around the bar with 100% probability. AOP=
adverse outcome pathway; BN = Bayesian network; DCP = 3,5‐dichlorophenol; ETR = electron transfer rate; Fv/Fm =maximum quantum yield of photosystem
II; LPO = lipid peroxidation; OXPHOS = oxidative phosphorylation; ROS= reactive oxygen species.
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extremely high or low stressor levels (Supplemental Data
Figure S4).
The sensitivity of the AOP‐BN is described in Table 4.

Pathway I (initiated by OXPHOS, Figure 1B) started affecting
growth at lower DCP concentrations than Pathway II
(initiated by ROS) (see Supplemental Data Figure S3). This
result is consistent with the description of the qualitative
AOP (Xie et al. 2018). Nevertheless, the ROS node had
only marginally lower influence than OXPHOS on the
AO (Table 4; 32.9% vs 33.3% mutual information under the
selected combination Rule 2). This suggests that the ROS
pathway also plays an important role in this AOP network,
even though it reduces the overall accuracy of the AOP‐BN
(Table 5; described later in this section). The contribution of
the ROS pathway to the predicted AO might be more im-
portant at higher stressor levels, but such details are not
revealed by this sensitivity analysis. The 4 alternative com-
bination rules resulted in large variation in the sensitivity of
the AO to the different parent nodes, with no systematic

pattern (Table 4). This suggests that the choice of combi-
nation rule for integrating pathways in a quantitative AOP
network can have a strong influence on the model's per-
formance. The weighting of multiple pathways in an AOP‐BN
should ideally be estimated directly from the data or vali-
dated by external data, whenever there are sufficient data.

The diagnostic run of the AOP‐BN backward from the
AO node through the KEs and MIEs to the stressor node
exemplifies a unique property of BN models (Kjærulff and
Madsen 2008). The interpretation is less straightforward
than for prognostic inference, but can be illustrated by
2 scenarios, representing the least AO (120–160 fronds,
Figure 5A) and the most AO (0–30 fronds, Figure 5B). For a
given target of the AO node, the posterior probabilities of
the stressor states can be used to indicate the most likely
range of stressor concentrations that must not be exceeded.
In our example, given the target of 120 to 160 fronds
(Figure 5A), the 4 stressor intervals below 0.61mg/L
all have approximately the same posterior probability
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Figure 5. Diagnostic inference. The AOP‐BNmodel is run backwards from the adverse outcome node (fronds number): high fronds number (weakly adverse outcome)
(A); low fronds number (strongly adverse outcome) (B). For more explanation, see Figure 4. AOP= adverse outcome pathway; BN=Bayesian network; DCP= 3,5‐
dichlorophenol; ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO= lipid peroxidation; OXPHOS=oxidative phosphorylation;
ROS= reactive oxygen species.
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(20.4%–22.1%), whereas the range 0.61 to 1mg/L has only
10.2% probability, and the higher stressor intervals each
have less than 0.5% probability. In terms of cumulative
probability, if the regulatory protective or management
target is the least AO, there is only 13% probability that the
stressor can exceed 0.61mg/L and only 3% probability that
the stressor can exceed 1mg/L. The equal posterior dis-
tribution of the 4 lowest stressor states reflects the low
sensitivity of the model to stressor changes in this range
(Supplemental Data Figure S4); a more sensitive model
would more likely show a steeper increase in probability also
for the lower stressor intervals.
When running the AOP‐BN backward from the AO of

largest magnitude, conversely, the posterior probabilities of
the stressor states show the range of stressor intervals that are
most likely to cause this extreme state. In our example
(Figure 5B), the 4 highest DCP intervals (1.65–12mg/L) each

have close to 25% probability. This implies that any concen-
tration above 1.65mg/L is equally likely to result in the most
AO of 0 to 30 fronds. The AOP‐BN shows low sensitivity to
changes in stressor level above 2.7mg/L (Supplemental Data
Figure S4). At this stressor level, OXPHOS has reached its
lowest interval, whereas the next stressor interval (2.72–4.48
mg/L) results in a slight increase in ROS. As mentioned, the
low model sensitivity at high stressor levels is related to the
lack of observations of most variables (Supplemental Data
Table S1) because of mortality. Although the target node has
low sensitivity to changes in the highest stressor intervals, the
AOP‐BN can still give an indication of safe versus unsafe
stressor levels, accounting for the effects and related un-
certainties throughout all 3 pathways. In our case study, this
diagnostic inference has limited usefulness because growth
inhibition may also be a result of many other MoAs that are
not properly characterized and thus not included in the
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Figure 6. Combination of prognostic and diagnostic inference. The AOP‐BN model is run omnidirectionally from intermediate nodes: from molecular initiating
events (A); from key events (B). For more explanation, see Figure 4. AOP= adverse outcome pathway; BN= Bayesian network; DCP= 3,5‐dichlorophenol;
ETR= electron transfer rate; Fv/Fm=maximum quantum yield of photosystem II; LPO= lipid peroxidation; OXPHOS= oxidative phosphorylation;
ROS= reactive oxygen species.

Adverse Outcome Pathways Quantified with Bayesian Networks—Integr Environ Assess Manag 17, 2021 159



model. Nevertheless, the fact that BNs allow for backward
running can be useful for more thoroughly developed AOP‐
BNs based on data‐rich cases.
Finally, the AOP‐BN model can be run omnidirectionally

from the MIEs (Figure 6A) or from the KEs (Figure 6B), or by
a combination of these. In these examples, the middle in-
terval was chosen for each node of the MIEs (Figure 6A) or
KEs (Figure 6B), respectively. This example illustrates that a
parameterized AOP‐BN can be used for quantitative pre-
diction of the AO from measured events at various steps
along the AOP continuum. The resulting posterior proba-
bility distributions of the AO were quite similar in the
2 cases, but running the AOP‐BN from the KERs compared
to the MIEs resulted in a slightly lower standard deviation of
the AO (Figure 6). In general, more precise AO predictions
can be expected when the AOP‐BN is instantiated with
observation closer to the AO node.
The performance of the AOP‐BN in terms of accuracy was

more systematically evaluated by running the model from
the stressor, MIE and KE nodes respectively, and comparing
the predicted AO states with the observed fronds number
(Table 5). The accuracy rate was calculated as the percent of
cases in which the AO interval with the highest posterior
probability was consistent with the observed interval, given
the 4 alternative combination rules and the 3 alternative
resolutions of the AO node (Table 3). Combination Rule 4,
which represents Pathway I only (Figure 1B), generally re-
sulted in higher accuracy than 3 other combination rules.
Thus, the high uncertainty introduced by some of the esti-
mated KERs in Pathways IIa and IIb (Figure 2) reduced the
overall accuracy of the AO node. This also reflects a general
property of BNs: Introducing more parent nodes will in-
crease the variability of the child node, which accumulates
the uncertainty of the parent nodes. The observation can
also be interpreted in an toxicological context because the
most sensitive pathway (Pathway I) is expected to be per-
turbed at the lowest concentrations, whereas increase in the
exposure at intermediate to high concentrations would be
expected to perturb an increasing number of pathways, of
which one or more may not be properly characterized
quantitatively and/or quantitatively and thus provide a
poorer fit. This reduction in prediction power will be of
largest relevance in high‐exposure scenarios, potentially
reflecting either extreme exposures to single stressors or the
combined effects of multiple chemicals interacting with the
same MIE and sharing the same toxicological mechanism.
However, an external validation with new data would likely
result in lower accuracy than the current interval validation,
even for the single‐pathway AOP (combination Rule 4).
Because the present study focuses on the behavior of the
whole network model, the performance of the BN with
combination Rules 1 to 3 was inspected more closely.
Combination Rules 1 to 3 did not yield much difference in

performance: Combination Rules 1 and 2 gave identical
accuracy rates, whereas Rule 3 differed by 1 more wrong
case (–5.6 percentage points) in 1 situation and 1 more
correct case in 2 other situations.

Running the model from a node closer to the AO typically
resulted in higher accuracy. For example, for combination
Rule 2 with required precision of 3 states for the AO, the
accuracy increased from 62.5% (model run from stressor) to
77.8% (run from MIEs) and further to 83.3% (run from KEs).
In general, predictions based on measured variables (KEs)
closer to the AO are likely to give more accurate (as well as
precise) prediction than are predictions based on MIEs or
earlier KEs. This observation provides confidence in the
choice of endpoints used in populating both the qualitative
and the quantitative AOP, given that coherence is expected
to be largest between events close to each other and sen-
sitivity of response should increase toward the MIE (Becker
et al. 2015). In cases where measured values are only
available for variables located early along the AOP con-
tinuum, the AOP‐BN can still be used for predicting a
probability distribution of the AO, but possibly with lower
accuracy and precision.

Lowering the resolution of the AO node also increased
the accuracy rate. When the model performance was as-
sessed by all 5 states of the AO, the accuracy rate was only
in the range 37.5% to 61.5% for the first 3 combination
rules. When the resolution was reduced to 3 states, the
accuracy rate increased to the range 62.5% to 83.3%.
Finally, with a binary AO node, the accuracy reached 94.4%
to 100%. Thus, for applications of AOP‐BNs in which a low
resolution (2–3 states) of the AO node is sufficient, a higher
accuracy can be expected.

Relevance of AOP‐BNs for environmental risk assessment

Characterizing the quantitative relationship between the
MIE, KE, and AO and their KERs is a key feature in providing
plausible causal relationships between the individual com-
ponents of the AOP (Becker et al. 2015). Because AOPs are
by definition chemically agnostic, they cannot be used di-
rectly to assess ecological risk, which should consider the
effect of a stressor in relation to the exposure. The reliable
development of quantitative relationships between the in-
dividual steps of the AOP, independent of the stressor
perturbing the MIE, is thus a significant contribution toward
more extensive use of mechanistic information for risk as-
sessment purposes. Quantitative knowledge of the rela-
tionship between perturbed MIEs, KEs, and regulatory‐
relevant AOs has potentially large relevance for how we
assess the cumulative risk of multiple chemicals displaying
similar MoA, which should be expected to share common
AOPs. The AOP‐BNs offer an attractive alternative to
other quantitative approaches based on point estimates
(single values with confidence intervals), by explicitly mod-
eling the uncertainty of each component and letting
this uncertainty propagate throughout the entire AOP
continuum or network.

With the probabilistic approach described in our study,
we can refine the commonly used risk assessment approach,
which is based on the calculation of a single‐value risk
quotient (RQ) as the ratio exposure/effect. The binary
approach—considering whether the risk quotient exceeds
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the value 1—has strong traditions in prospective risk as-
sessment such as chemical safety assessment, and is typi-
cally the requirement for decision making, for example, for
chemical product registration (Hunka et al. 2015). Our ex-
ample shows that an AOP‐BN model can provide a proba-
bilistic prediction of a binary target node with high accuracy.
Such a probabilistic prediction can be more informative than
the single‐number outcome of a traditional risk assessment
(Carriger and Barron 2020). For example, the AOP‐BN
combined with exposure data can quantify the probability of
crossing a given AO threshold (e.g., below 90 fronds) to
12% at a low stressor level (Figure 4A) and to 43% at an
intermediate stressor level (Figure 4B).
Although traditional regulatory risk assessment with a bi-

nary outcome is convenient for prospective chemical safety
assessment, this binary approach has been criticized for
being too conservative for environmental assessments, such
as retrospective ecological risk assessment and chemical
status assessment according to the Water Framework
Directive (WFD; EC 2000) (Hunka et al. 2015; Posthuma
et al. 2019). The problem with overconservative classi-
fication is exacerbated when strict combination rules are
used for combined assessment of multiple stressors or
multiple endpoints, and the tendency of too strict assess-
ments further increases with higher levels of uncertainty
(Moe et al. 2015). Probabilistic approaches, which can pro-
vide a probability distribution rather than a single value for
the target variable, have therefore been advocated to better
account for uncertainty in complex assessment systems. The
BN implementation of the Relative Risk Model (BN‐RRM;
Landis this issue) has been applied for this purpose in many
different locations (Cains and Henshel this issue; Mitchell
et al. this issue; Wade et al. this issue). Some of these ap-
plications include AOPs as integrated components of the
BN model (Landis et al. 2020). Another recent example of
multilevel endpoint assessment is based on species sensi-
tivity distributions (SSDs) (Posthuma et al. 2019). Although
ecological risk assessment based on SSDs typically calcu-
lated only a percentage of the curve (e.g., the lower 5% of
species affected), Posthuma et al. (2019) converted the
whole SSD curve into a 5‐level scale, representing different
intervals of the SSD. This scale parallels the 5‐level eco-
logical status class system of the WFD, which has been
successfully incorporated in BN models for scenario as-
sessments (e.g., Moe et al. 2016). The current AOP‐BN
approach could easily be extended to incorporate an SSD as
a multispecies, multistate endpoint node, given the relevant
toxicity data.
The validation of the AOP‐BN model presented here

showed that the accuracy of model predictions was
relatively low for the 5‐state resolution of the AO node
(61%–78% accuracy for predictions based on MIEs or KEs),
but somewhat better for the 3‐state resolution (78%–89%
accuracy). A higher accuracy rate may be desirable for an
AOP‐BN model to be a reliable component of a risk as-
sessment, but the performance will often be limited by the
extent of the data set. The deviation between observed and

predicted values in the lowest and highest ends of the
stressor gradient (Supplemental Data Figure S4) is related to
the high variability of simulated values for some KERs, for
example, in ROS→ Fv/Fm (Figure 2E). The variability of the
measured values reflects partly aleatoric uncertainty (i.e.,
stochastic variation) and partly epistemic uncertainty
(i.e., incomplete knowledge). It is commonly assumed that
only the latter type of uncertainty can be reduced by addi-
tional measurements or improved modeling methods
(Sahlin et al. this issue). Data resulting from toxicity testing
typically contain a low number of stressor concentrations in
replicates, but if the data are intended for regression
modeling, the experimental units should preferably be dis-
tributed along the stressor gradient instead of being
grouped into replicates (Fox and Landis 2016). In our case,
the original data set (Supplemental Data Table S1) would
have been more informative if the 24 experimental units
were distributed as 24 points along the stressor concen-
tration gradient, instead of being distributed at 6 concen-
trations with 3 (pseudo)replicates each. However, if more
relevant data become available from other sources, these
could be combined with the original data set in a hier-
archical regression model (Gronewold and Borsuk 2010;
Kotamäki et al. 2015) to update the CPTs, which could result
in improved precision as well as accuracy. An independent
data set could alternatively be used for a more thorough
external validation of the AOP‐BN, which would allow as-
sessment of performance to other chemicals interacting
with the same MiEs and sharing the same set of AOPs
(e.g., within the chemical applicability domain of the AOPs).
For the AOP‐BN model presented here, we have focused

on the methodological aspects of quantification and vali-
dation, rather than on the usability of the results for risk
assessment. All variables were therefore quantified with
original values and units to aid the selection of the most
appropriate statistical model. Nevertheless, all variables can
easily be converted, for example, to percentage of deviation
from a reference value or a management target, to make the
model predictions more readily applicable for a risk as-
sessment. Although our case study had a macrophyte as the
model species for DCP with growth as the endpoint, the
method is applicable to any taxa, endpoints, and stressor of
concern.
Quantification of AOPs by the empirical approach de-

scribed here will typically be more feasible than by mecha-
nistic modeling methods based on systems biology (Schultz
and Watanabe 2018), given that our approach requires
fewer assumptions and can make use of the data more ef-
ficiently (Zgheib et al. 2019). In comparison with the other
mentioned studies that have applied BN modeling for
qAOPs, our study combines different benefits from the
other studies. Firstly, we model more than 2 states of the
AO (cf. Landis et al. 2020). Secondly, we model a network
that combines several AOP chains (cf. Burgoon et al. 2019).
Thirdly, we apply both Bayesian regression and Bayesian
network modeling (cf. Zgheib et al. 2019) in an integrated
approach.
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CONCLUSIONS AND OUTLOOK
Our study has demonstrated how an AOP network can be

quantified based on a small data set, by taking advantage of
both Bayesian regression analysis and Bayesian network
modeling to combine several information sources: ex-
perimental data, established dose–response functions, and
expert knowledge. The quantification of each KER by CPTs
is consistent with the modular approach recommended by
Foran et al. (2019). The quantified AOP‐BN can be applied
to predict the probability and severity of AOs from meas-
ured responses of MIEs or KEs, in cases where it is impos-
sible or impractical to measure the AOs directly.
Although we chose a Bayesian regression method for

flexible modeling of the dose– and response–response re-
lationships, similar results could be obtained by the more
common frequentist dose–response regression models (Ritz
et al. 2015). Thus, this relatively simple approach of re-
gression modeling combined with BN modeling can be
recommended as a first step for quantification of AOPs and
AOP networks based on limited data sets. The use of re-
gression models for quantifying the CPTs, as opposed to for
count of observations or expert judgment only, allows for a
higher resolution of the nodes (although our example was
limited to only 5 states for simplicity). Hence, the loss of
information due to discretization of variables, which is an
inherent shortcoming of BN modeling, can be mitigated by
combination with regression modeling.
The modeling approach presented here can still be im-

proved in several ways, if sufficient data sets become
available. For example, the issue of pseudoreplication,
which must be handled when defining response–response
relationships, could be modeled more explicitly. The se-
lection and parametrization of the individual dose–response
functions could be refined by more extensive statistical
model selection procedures. Moreover, an optimal
weighting of multiple pathways could be estimated.
The AO endpoint of AOP‐BN model may be further

extended from the individual response level to include
population‐level responses. Although BN models are not
commonly used for dynamic modeling such as population
dynamics, the outcome of a population model can be in-
corporated as an AO (Mitchell et al. this issue). For species
like L. minor, for which mechanistic effect and population
models are already developed and are being applied for
regulatory purposes (Schmitt et al. 2013; Hommen
et al. 2016), incorporating an additional AO node based
on population modeling can be a straightforward next
step. Furthermore, Murphy et al. (2018) and Schultz and
Watanabe (2018) have proposed the use of dynamic en-
ergy budget (DEB) for linking quantitative AOPs with
population‐level responses, using the individual organisms
as a “pivot” connecting suborganismal processes to higher
level ecological processes. In the opposite end, the AOP‐
BN can be linked to a stressor source through an ag-
gregate exposure pathway, which is a conceptual frame-
work to characterize relationships between stressor source,
exposure route, internal exposure (e.g., toxicokinetics) and

resulting target exposure (Hines et al. 2018; Tan et al.
2018). Given the modular and flexible structure of BNs, an
AOP‐BN can also be extended to handle multiple stres-
sors, where different types of interactions can be im-
plemented in the CPTs, or to predict AOs of multiple
biological endpoints.
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