Accepted Manuscript

This is an Accepted Manuscript of the following article:

Peter Wiberg-Larsen, Ulrik Nørum, Jes Jessen Rasmussen. Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function.
Environmental Pollution. Volume 273, 2021, 116404. ISSN 0269-7491.

The article has been published in final form by Elsevier at
http://dx.doi.org/10.1016/j.envpol.2020.116404
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function

Peter Wiberg-Larsen ${ }^{1}$, Ulrik Nørum ${ }^{1,2} \&$ Jes Jessen Rasmussen $^{1,3 *}$
${ }^{1}$ Institute for Bioscience, Aarhus University, Vejlsoevej 25, DK-8600, Silkeborg, Denmark ${ }^{2}$ Present address: Nyborg Gymnasium, Skolebakken 13, DK-5800 Nyborg, Denmark
${ }^{3}$ Present address: Norwegian Institute for Water Research (NIVA), Section for Freshwater Ecology, Gaustadallèen 21, 0349 Oslo, Norway

* Corresponding author:

Jes Jessen Rasmussen
Norwegian Institute for Water Research (NIVA), Section for Freshwater Ecology, Gaustadallèen 21, 0349 Oslo, Norway
e-mail: ras@niva.no

Abstract

We exposed twelve mesocosm stream channels and four instream channels to one, two, and four pulses of the insecticide lambda-cyhalothrin ($0.1 \mathrm{ug} \mathrm{L}^{-1}$) applied at two day intervals, each pulse lasting 90 minutes. Unexposed controls were included. We monitored macroinvertebrate taxonomic composition in the channels and in deployed leaf packs one day before and 29 days after the first exposure. Further, we measured drift in and out of the channels and leaf litter decomposition. Lambda-cyhalothrin exposures induced significantly increased drift in both experiments especially for Gammarus pulex, Amphinemura standfussi, and Leuctra spp. Macroinvertebrate taxonomic composition increasingly changed with increasing number of lambda-cyhalothrin exposures being most pronounced in the mesocosm channels. Further, leaf decomposition significantly decreased with increasing number of exposures in the mesocosm channels. Our study showed that species with predicted highest sensitivity to lambda-cyhalothrin were primary drivers of significant changes in taxonomic composition lasting for at least one month despite continuous recolonization of exposed channels from upstream parts of the natural stream and from the water inlet in the mesocosm channels. The overall results highlight the importance of sequential exposures to insecticides for understanding the full impact of insecticides on macroinvertebrates at the community level in streams.

Key words: Insecticides, sequential exposures, macroinvertebrates, ecological effects, streams

Capsule: Increasing number of sequential exposures with lambda-cyhalothrin increased changes in macroinvertebrate community structure and decreased their ecological function.

1. Introduction

Application of agricultural pesticides often results in unintentional losses to adjacent streams. Primary transport routes include spray drift, surface runoff, and subsurface tile drainage, (Neumann et al., 2002; Kronvang et al., 2004). Pesticide transport via surface runoff and subsurface tile drainage to streams is triggered by major precipitation events resulting in pulses of increased pesticide concentrations (Rasmussen et al., 2015; Boye et al., 2019).

Agricultural insecticides, especially pyrethroids, are important drivers of ecological impairment in streams, especially for macroinvertebrates and loss of their biodiversity (Beketov et al., 2013; Malaj et al., 2014). Pyrethroid insecticides still exceed regulatory threshold levels in streams more frequently than other classes of insecticides, although concentrations rarely reach levels that cause acute mortality (Rasmussen et al., 2015; Wolfram et al., 2018). In fact, pyrethroids exceeded regulatory threshold levels in more than 80% of the agricultural stream water samples in the U.S. (Wolfram et al., 2018). Importantly, pyrethroids are particularly toxic due to their fast mode of action targeting the sodium channel (Vijverberg and van den Bercken, 1990), and short pulses of pyrethroids even below the regulatory acceptable concentrations (RAC) can generate significant and long-lasting effects on macroinvertebrate species (e.g. Liess \& Scuhlz, 1996; Rasmussen et al., 2013a). Long-lasting effects are probably produced through a series of sublethal effects (Liess et al., 2013), including increased drift (Schulz and Liess, 1999), reduced pupation success (Schulz, 1997), reduced emergence success (Rasmussen et al., 2017), inhibited mating behavior (Heckmann et al., 2005), and reduced predation success (Rasmussen et al., 2013b).

Importantly, exposure to pyrethroids and other lipophilic insecticides in agricultural streams is not necessarily restricted to one single event coinciding with the time of insecticide application on
adjacent agricultural areas. Rasmussen et al. (2015) showed that agricultural streams in Denmark received up to 5 significant pulse exposures during May, June, and July depending mainly on local precipitation patterns. Of further importance, effects of pesticides on stream macroinvertebrate communities generally exceed the effects of similar exposures observed in laboratory and most mesocosm studies (Schäfer et al., 2012; Liess et al., 2016). In part, this might be explained by sequential pesticide exposures occurring in stream ecosystems, as sequential exposure scenarios are not included in standard ecotoxicity testing (Liess et al., 2016). This incongruence between effects observed in the field and in controlled experiments indicates that the current risk assessment of pesticides is not sufficiently protective. Consequently, studies addressing this issue should hold high priority.

Overall, remarkably few studies address effects of sequential exposures (but see Russo et al., 2018; Bray et al., 2019). Notably, short-term exposure to pyrethroids may result in long-term weakening of individuals, which may render the organisms increasingly susceptible to subsequent exposures (Liess et al., 2016; Ashauer et al., 2017; Russo et al., 2018). Existing studies addressing sequential exposures of insecticides focus on drift in macroinvertebrate assemblages during and after exposure to environmentally unrealistic concentrations of neonicotinoids (Mohr et al., 2012; Berghahn et al., 2012), whereas Russo et al. (2018) collected Gammarus pulex from agricultural and forest streams (representing previous exposure regime) and performed standard acute mortality tests to estimate EC_{50} concentrations. Bray et al. (2019) exposed macroinvertebrate communities to two sequential exposures of an organophosphate in combination with additional non-toxic agricultural stressors in a recycling stream mesocosm setup. Bray et al. (2019) observed significant changes in species composition and leaf litter decomposition following addition of the organophosphate, but the exposure continued for multiple days according to the natural degradation of the parent compound
in the closed system. Consequently, studies addressing community and ecosystem level effects of sequential insecticide exposure within the range of environmentally realistic exposure scenarios are lacking.

This study aims to gain insight into reasons behind the observed incongruence between results of studies conducted in the field and in controlled lab- and mesocosm setups, and consequently, to potentially help improve current risk assessment procedures. In this study, we investigate if increasing sequential exposure to a pyrethroid insecticide increases community level effects on macroinvertebrates compared to a single pulse exposure in mesocosm channels and in situ (instream) channels to explore ecological responses in experimental setups with different levels of resemblance to natural stream systems. We applied the pyrethroid lambda-cyhalothrin at an environmentally realistic concentration $\left(0.1 \mu \mathrm{~g} \mathrm{~L}^{-1}\right)$ (see e.g. Wolfram et al., 2018) and assessed macroinvertebrate drift and changes in taxonomic composition and function following $0,1,2$, or 4 repeated pulse exposures. Leaf litter decomposition was used as measure for ecosystem function. We hypothesized that increased exposure frequency will increase changes in taxonomic composition by reducing densities of especially sensitive taxa who will evade exposed systems or areas through increased drift activity. Since some of the species with highest sensitivity towards pyrethroids are facultative or obligate shredders, these structural changes in the macroinvertebrate assemblages will translate into altered macroinvertebrate mediated leaf litter decomposition.
2. Material and methods

2.1 Mesocosm stream channels

We used 12 artificial stream channels $(\operatorname{LxWxD}=12 \times 0.3 \times 0.3 \mathrm{~m})$, with steel bottom, sides of acryl plastic, and a slope of 5%. Each channel was equipped with riffles $(\mathrm{n}=5)$ and pools $(\mathrm{n}=6)$. Riffles
contained stones $($ diameter $>150 \mathrm{~mm})$ and stones $/$ gravel $($ diameter $=48-96,24-48$, and $12-24 \mathrm{~mm}$, respectively, in a ratio of 1:4:4), whereas pools contained gravel/sand (diameter $=6-12,3-6$, and 1-3 mm , respectively, in a ratio of 1:1:0.5). Sediment depth varied from $5-6 \mathrm{~cm}$ in pools to $10-20 \mathrm{~cm}$ in riffles. An axial pump with water intake from a nearby stream (Lemming stream, Denmark: $\left.56^{\circ} 14^{\prime} 49^{\prime \prime} \mathrm{N}, 9^{\circ} 31^{\prime} 51^{\prime \prime} \mathrm{E}\right)$, continuously fed the channels with stream water. Lemming stream has a high inflow of groundwater and a catchment dominated by forest. Discharge was measured in each stream channel just before each exposure and during background drift measurements (see section 2.5) using a 5 L plastic bucket and a stopwatch. Moreover, temperature was measured throughout the experiment in each channel using HOBO TidBit temperature loggers (logging interval 30 min). Macroinvertebrates were introduced to the channels on April 12 ${ }^{\text {th }}, 2010$ using the procedure described in Graeber et al. (2017). In brief, macroinvertebrates were collected from Lemming stream using kick sampling along a reach of approximately 500 m . In total, 120 kick samples were transferred to each mesocosm channel. Graeber et al. (2017) showed that this method provided a community structure in the mesocosm channels that was comparable to Lemming stream.

2.2 Instream channels

Instream channels were established in Stavis stream (Denmark: $55^{\circ} 26^{\prime} 25^{\prime} \mathrm{N}, 10^{\circ} 12^{\prime} 23^{\prime \prime} \mathrm{E}$). This stream has a catchment consisting primarily of forest and contains a highly diverse and pristine macroinvertebrate community. On April $27^{\text {th }}, 2010$ we created four parallel channels (LxW $=$ $25 \times 0.5 \mathrm{~m}$) in the centre of a natural riffle, these channels being separated by 0.5 m high flexible walls made as a double layer of strong plastic folia fixated to the stream bed using an iron chain (2.5 $\mathrm{kg} \mathrm{m}^{-1}$). The upper parts of the walls were fixed to steel sticks mounted in the streambed and stabilized laterally by 10 mm plastic sticks. Using uranine dye, we confirmed that the walls prevented exchange of water between the channels. Discharge in Stavis stream was measured using
an Ott, Kleinflügel, 30 mm in each channel just before each exposure and during background drift measurements (see section 2.5). Moreover, temperature was measured throughout the experiment in each channel using a HOBO Tidbit temperature logger (logging interval 30 min).

2.3 General experimental approach

We performed experiments in the 12 mesocosm channels and the 4 instream channels following the same experimental protocol. We exposed in-channel macroinvertebrate communities to lambdacyhalothrin (nominal concentration $=0.1 \mu \mathrm{~g} \mathrm{~L}^{-1}$) for 90 minutes, corresponding to approximately $1 / 2$ of the EC50 based on the 48h acute mortality testing of Daphnia magna. Ecotoxicity information for lambda-cyhalothrin was retrieved from the Pesticide Properties Database (Lewis et al., 2016). We used four treatments: Control, 1P (one pulse of lambda-cyhalothrin), 2P (two pulses of lambdacyhalothrin), and 4P (four pulses of lambda-cyhalothrin), with lambda-cyhalothrin exposure on experimental days $0,2,4$, and 6 (Day 0 exposure on May $11^{\text {th }}$ and May $4^{\text {th }}$ in the mesocosm and instream channels, respectively). Lambda-cyhalothrin was dissolved in 96\% ethanol, and all channels, including controls received an equivalent dose of ethanol. We used a replicated design in the mesocosm channels $(\mathrm{n}=3)$ and a non-replicated design in the instream channels (position in sequence: $\mathrm{C}-1 \mathrm{P}-2 \mathrm{P}-4 \mathrm{P})$. In each channel, we applied lambda-cyhalothrin continuously at the channel inlet using battery driven, adjustable pumps and diffusers (control channels received equivalent doses of ethanol).

We measured exposure concentrations of lambda-cyhalothrin in each channel after 60 minutes of exposure. Water samples for exposure validation were collected at the outlet in the mesocosm channels and at $0,12.5$, and 25 m from the inlet in the instream channels. Samples were collected using 1 L glass bottles.

The Danish Ministry of Environment granted permission to expose channels in Stavis stream to lambda-cyhalothrin.

2.4 Quantification of lambda-cyhalothrin exposure concentrations

All collected water samples were placed in cooling containers, immediately transported to the laboratory, and analysed within 24 hours. The lambda-cyhalothrin quantification was performed following the methods described in Wiberg-Larsen et al. (2016). For all samples, esfenvalerat was added as internal standard. The extraction of lambda-cyhalothrin was performed on C18-columns (Sep Pak Vac, $6 \mathrm{cc}, 1 \mathrm{~g}, \mathrm{C} 18$ cartridges, Waters). The columns were conditioned with 5 mL methanol and washed with 5 mL mill-Q water. The flow rate of the sample water was $3 \mathrm{~mL} \mathrm{~min}^{-1}$ at 20 kPa vacuum. Subsequently, the C18-column was washed with 5 mL mill-Q water and dried for 1-2 minutes at $30-40 \mathrm{kPa}$ vacuum. The lambda-cyhalothrin samples were eluted from the columns with 4 mL methanol, evaporated to dryness, and resolved in $0.300 \mathrm{~mL} \mathrm{75} \mathrm{\%}$ methanol.

Lambda-cyhalothrin concentrations were quantified on a Hewlett Pachard LC-MSD system, comprised of an HP Series 1100 HPLC and G1946A MSD quadrupole mass spectrometer equipped with electrospray ionization (ESI) in positive mode. An HPLC-column (C18, 150x2.1 mm, Phenoemenex from Subware) was used (flow $0.4 \mathrm{~mL} \mathrm{~min}^{-1}$, injection of $50 \mu \mathrm{~L}$ samples and at $25^{\circ} \mathrm{C}$). The following LC solvents were used: Eluent A: 10 mM ammoniumacetate: methanol, 990:10 (v:v), and Eluent B: 10 mM ammonium acetate: methanol, 10:90 (v:v). The elution gradient was: (time, \% Eluent B: ($0 \mathrm{~min}, 75 \%$); ($3 \mathrm{~min}, 100 \%$); ($14 \mathrm{~min}, 100 \%$); ($14,1 \mathrm{~min}, 75 \%$); post runtime: $6 \mathrm{~min}, 25 \%$ Eluent B. Mass spectrometer-settings were: Mode: ESI positive (SIM: $m / z 467$ for lambda-cyhalothrin). Drying gas temperature was $350^{\circ} \mathrm{C}$ and flow rate was $10 \mathrm{~L} \mathrm{~min}^{-1}$. Nebulizer
pressure was 30 psig and capillary voltage was 3500 V (Fragmentor: 50 V). The standard curve was calculated from internal standard concentrations of $0,0.7,3.5,35.0,70.0$ and $350 \mathrm{ng} \mathrm{L}^{-1}$. The limit of quantification (LOQ) for lambda-cyhalothrin was estimated to $5 \mathrm{ng} \mathrm{L}^{-1}$ with recovery rates of 70$110 \%$, and the reported concentrations were corrected according to recovery rates. LOQ was estimated from the lowest point on the calibration curve (ISO/TS 13530).

2.5 Macroinvertebrates sampling and drift

We took Surber samples (area $200 \mathrm{~cm}^{2}$, mesh size $500 \mu \mathrm{~m}$) on experimental days 0 (pre-exposure) and 29 from each channel. On each sampling date, 5 and 10 samples were collected per channel in the mesocosm and instream channels, respectively, with sample totals amounting to 120 and 80 in the mesocosm and instream channels, respectively.

We measured macroinvertebrate drift at the outlet of each mesocosm and instream channel during and two hours after each exposure (total time $=3.5$ hours) using drift nets (net opening $507 \mathrm{~cm}^{2}$, mesh size $200 \mu \mathrm{~m}$). For the instream channels, drift nets were equipped with lateral aluminium wings to collect almost the entire outflow, whereas all water discharged through the drift nets in the mesocosm channels. As benchmark measure for drift activity, we also measured drift during two hours at mid-day and dusk in all channels in both the mesocosm and instream channels. Baseline drift was measured the day before first exposure (experimental day -1). In addition, we measured influx of new macroinvertebrates to the semi-open mesocosm channels via pumping water from Lemming stream. Drift nets were mounted at the inlet of each stream channel for two hours during mid-day and dusk on experimental days 19/20. For the instream channels, we measured drift activity into the channels at the inlets for two hours during mid-day and dusk.

All macroinvertebrate taxa were identified to species/genus level except Oligochaeta, Hydracnidia, and Diptera being identified to family level.

2.6 Leaf packs

We deployed leaves of Alnus glutinosa collected on September $29^{\text {th }}, 2009$ for the leaf package experiments. The leaves were picked from trees just before abscission and stored at $-5^{\circ} \mathrm{C}$ until the experiments. We dried the leaves at $60^{\circ} \mathrm{C}$ for 48 h and prepared 5 and 10 leaf packages for each channel in the mesocosm and instream channels, respectively. Approximately 3 gdw was enclosed in each leaf bag (weighed with a precision of 1 mg). The leaf bags consisted of $10 \times 10 \mathrm{~cm}$ plastic nets (mesh size 5 mm) enabling macroinvertebrate access to the leaf material. All leaf packs were conditioned in stream water from Stavis stream in small plastic containers for six days before deployment in the channels. The leaf packs were deployed in the mesocosm and instream channels one week before the first exposure (experimental day -7). On experimental days 0 and 29, we sampled 5 and 10 leaf packs from each mesocosm and instream channel, respectively. All macroinvertebrates were removed and stored in 70% ethanol, and the remaining leaf material was dried at $60^{\circ} \mathrm{C}$ for 48 h and weighed.

2.7 Data treatment and statistics

We checked for potential significant differences in lambda-cyhalothrin exposure concentrations, temperature, and discharge among all exposures and treatments (1,2 , and 4 pulses, unexposed controls not included for lambda-cyhalothrin exposure concentrations) for the mesocosm and instream channels. This was done using a one-way ANOVA in SAS 9.1 for Windows. In case of significant ANOVA tests, we tested all pairwise comparisons using the sequential Holm-Bonferoni corrected Fisher's Least Significant Difference test.

Differences in drift rate among treatments were only tested for dominant taxa using pairwise t-tests in SAS 9.1 for Windows, as random absence of rare species would potentially introduce type II errors (i.e. false negatives).

We analysed changes in macroinvertebrate community composition using non-metric multidimensional scaling (nMDS) of Bray-Curtis similarities and 9,999 permutations. Before analyses, data were square root transformed to down-weigh dominant taxa. Significant differences in macroinvertebrate community composition were identified using ANOSIM $(\alpha=0.05)$ followed by multiple pairwise tests using sequential Holm-Bonferoni corrections. We identified potential indicator taxa related to specific treatments using SIMPER. All analyses were performed using PRIMER 6.0 for Windows.

Leaf weight loss was calculated as the weight difference between days 0 and 29 (see section 2.6). Since the measured water temperatures were not significantly different among treatments in any of the experiments (see Results section), leaf decomposition rates were not standardized according to measured water temperatures. We tested for differences in weight loss among treatments using oneway ANOVA, followed by a sequential Holm-Bonferoni corrected Fisher's Least Significant Difference test in case of significant ANOVAs. Data were $\log _{10}$ transformed in order to meet test assumptions of normal distribution and equal variances. The one-way ANOVA test was performed in SAS 9.1 for Windows.

3 Results
3.1 Validation of exposure concentrations

The average concentration of lambda-cyhalothrin was 0.067 ($\pm 0.012 \mathrm{SD}) \mu \mathrm{g} \mathrm{L}^{-1}$ in the mesocosm channels $(\mathrm{n}=21)($ Table S1). Average lambda-cyhalothrin concentrations were not significantly different among the exposures and exposure treatments $(\mathrm{n}=7)$ (one-way ANOVA, $\mathrm{F}=1.611, \mathrm{P}=$ 0.216).

The average lambda-cyhalothrin concentration was $0.084(\pm 0.028 \mathrm{SD}) \mu \mathrm{g} \mathrm{L}^{-1}$ in the instream channels $(\mathrm{n}=21)($ Table S2). Average lambda-cyhalothrin concentrations were significantly different among exposures and exposure treatments $(\mathrm{n}=7)$ (one-way ANOVA, $\mathrm{F}=6.492, \mathrm{P}=$ 0.002). The lambda-cyhalothrin concentration in the last of the four exposures in the 4-exposure treatment was significantly higher than all other exposures and treatments (average lambdacyhalothrin concentration $\left.=0.140 \mu \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{p}<0.05\right)$ except the first of the exposures in the 2exposure treatment $(p=0.71)$ (Table S2). No additional significant differences were found. During the second round of exposures, we found trace concentrations of lambda-cyhalothrin in one of the channels where no lambda-cyhalothrin was added (i.e. in the 1-exposure treatment, Table S2).

3.2 Discharge and temperature

Discharge in the instream channels ranged $10.9-35.1 \mathrm{~L} \mathrm{~s}^{-1}$ (Table S3), and we found no significant differences in discharge among treatments (one-way ANOVA, $\mathrm{p}>0.05$). However, discharge increased in all channels with a factor of approximately 3.5 during the $3^{\text {rd }}$ round of lambdacyhalothrin exposure due to a rain event (Table S3). Water temperatures ranged $6.4-16.4{ }^{\circ} \mathrm{C}$ averaging $11.7^{\circ} \mathrm{C}$ (data not shown). We found no significant differences in average temperature among treatments (one-way ANOVA, $\mathrm{p}>0.05$).

Discharge in the mesocosm channels ranged $1.47-3.88 \mathrm{~L} \mathrm{~s}-1$, and we found no significant differences in average discharge among treatments (one-way ANOVA, $\mathrm{p}>0.05$). In general, channel specific discharge was stable throughout the experiment (Table S4). Water temperatures in the mesocosm channels ranged $5.9-15.7^{\circ} \mathrm{C}$ averaging $10.4^{\circ} \mathrm{C}$ (data not shown). We found no significant differences in average temperature among the treatments (one-way ANOVA, $\mathrm{p}>0.05$).

3.3 Macroinvertebrate drift

3.3.1 Mesocosm channels

During and just after the first exposure, drift rates increased significantly for 6 abundant taxa in channels exposed to lambda-cyhalothrin compared to controls (paired t-test, $\mathrm{p}<0.025$) (Fig. 1). Furthermore, drift rate also increased significantly for these taxa in response to the second, third, and fourth exposure, although the absolute increase was less pronounced compared to the first exposure (t-test, p<0.025) (Fig. 1). Among less abundant taxa, Oreodytes sanmarkii (Coleoptera) and Simuliidae (Diptera) showed significantly higher drift in response to lambda-cyhalothrin exposure during the first exposure (t -test, $\mathrm{p}<0.05$) (data not shown), while these taxa were almost entirely absent in drift nets during subsequent exposures (n.b. O. sanmarkii was also absent in surber samples, Table S6).

Influx of new macroinvertebrates in the semi-open mesocosm channels included several taxa, but especially individuals of Gammarus pulex (Malacostraca), Leuctra digitatalfusca (Plecoptera), A. standfussi (Plecoptera), Baetis rhodani (Ephemeroptera), Tanypodinae (Chironomidae, Diptera), and Orthocladiinae (Chironomidae, Diptera) were re-introduced to the channels (Table S5).

3.3.2 Instream channels

During and just after the first lambda-cyhalothrin exposure, drift rate increased significantly for G. pulex, B. rhodani, Heptagenia sulphurea (Ephemeroptera), L. fusca, Elmis aenea (Coleoptera), Agapetus ochripes (Trichoptera), and Tanypodinae in channels exposed to lambda-cyhalothrin compared to the untreated control (paired t-test, $\mathrm{p}<0.011$) (Fig. 2). The subsequent exposures, additionally, increased drift rate significantly for these species compared to the untreated control (paired t-test, $\mathrm{p}<0.05$) (data not shown).

Similar to the mesocosm channels, influx of new macroinvertebrates into each of the open instream channels was dominated by G. pulex, L. fusca, B. rhodani, Tanypodinae, and Orthocladiinae (data not shown).

3.4 Taxonomic composition of macroinvertebrates

3.4.1 Mesocosm channels

Before lambda-cyhalothrin treatments, we found 42 macroinvertebrate taxa and a total abundance of 7076 individuals m^{-2} in the surber samples (all channels included; Table S6), and the taxonomic composition was not significantly different among treatments (Figure 3A; ANOSIM, Global $\mathrm{R}=$ $0.034, p=0.09$, stress value $=0.23$).

The macroinvertebrate taxonomic composition was significantly different among treatments after lambda-cyhalothrin exposure(s) (experimental day 29) (Fig. 3B; ANOSIM, Global R $=0.234, \mathrm{p}=$ 0.001 , stress value $=0.18)$. The taxonomic composition of macroinvertebrates in unexposed control channels were significantly different from the 1 P (ANOSIM, $\mathrm{R}=0.167, \mathrm{p}=0.001$), 2 P (ANOSIM, $R=0.473, p=0.001$), and $4 P(A N O S I M, R=0.459, p=0.001)$ treatments, respectively (Fig. 3B). Further, the taxonomic composition in the 1P treatment was significantly different from those in the
$2 \mathrm{P}(\mathrm{ANOSIM}, \mathrm{R}=0.161, \mathrm{p}=0.004)$ and $4 \mathrm{P}($ ANOSIM, $\mathrm{R}=0.171, \mathrm{p}=0.003)$ treatments, respectively (Fig. 3B). The taxonomic composition in the 2 P and 4 P treatments were not significantly different (Fig. 3B, ANOSIM, $\mathrm{p}>0.05$). The strongest drivers for significant differences in the taxonomic composition of macroinvertebrates among treatments were abundances of G. pulex, A. standfussi, and L. digitata/fusca which decreased with increasing number of lambdacyhalothrin pulses, whereas abundances of Tanytarsini and especially Orthocladiinae increased with increasing numbers of lambda-cyhalothrin pulses (SIMPER analysis, Table S7).

Before the first lambda-cyhalothrin exposure, the taxonomic composition of macroinvertebrates located in the leaf packs strongly resembled the taxonomic composition in the surber samples (Table S8), although leaf packs in the 4P treatment contained a significantly different taxonomic composition compared to the other treatments (Fig. 3C; Global R $=0.081, \mathrm{p}=0.005$, stress value $=$ 0.16; ANOSIM, $\mathrm{R}=0.163, \mathrm{p}=0.003$). After lambda-cyhalothrin exposure(s$)$, the taxonomic composition in leaf packs was significantly different among treatments (Figure 3D, ANOSIM, Global $\mathrm{R}=0.149, \mathrm{p}=0.001$, stress value $=0.16$) with the taxonomic composition in unexposed control channels being significantly different from those in 2P and 4P treatments (Fig. 3D, ANOSIM, $\mathrm{R}=0.337, \mathrm{p}=0.001$ and $\mathrm{R}=0.397, \mathrm{p}=0.001$, respectively). No further significant differences between treatments were found. Similar to the surber samples, the significant differences in taxonomic composition of macroinvertebrates in leaf packs were driven mainly by decreasing abundance of G. pulex, A. standfussi, and L. digitataffusca and increasing abundance of Chironomini with increasing number of lambda-cyhalothrin pulses (SIMPER analysis, Table S9).

3.4.2 Instream channels

Prior to the first lambda-cyhalothrin exposure, we found 53 macroinvertebrate taxa and a total abundance of 4370 individuals m^{-2} (all channels included; Table S10), and we found no significant difference in community composition among treatments (Figure S1A, ANOSIM, Global $\mathrm{R}=0.048$, $\mathrm{p}=0.12$, stress value $=0.20$.

The community composition was significantly different among treatments after lambda-cyhalothrin exposure (experimental day 29) (Fig. S1B, ANOSIM, Global $\mathrm{R}=0.078, \mathrm{p}=0.025$, stress value $=$ 0.19) with the taxonomic composition in the control treatment being significantly different from those in the 2P and 4P treatments (Fig. S1B, ANOSIM, $\mathrm{R}=0.199, \mathrm{p}=0.025$ and $\mathrm{R}=0.25, \mathrm{p}=0.006$). We found no further significant differences among treatments. Strongest drivers for the observed significant changes in the taxonomic composition of macroinvertebrates were G. pulex, L. fusca, H. sulphurea, Limnius volckmari (Coleoptera), E. aenea, and Dicranota sp. (Diptera) decreasing in abundance, and Oligochaeta and Chironomidae increasing in abundance with increasing number of sequential exposures (SIMPER analysis, Table S11).

Before the first lambda-cyhalothrin exposure, the macroinvertebrate taxonomic composition in leaf packs strongly resembled the taxonomic composition in the surber samples (Table S12), and we found no significant difference in the macroinvertebrate taxonomic composition among treatments (Figure S1C; Global R $=0.054, \mathrm{p}=0.096$, stress value $=0.20$). After lambda-cyhalothrin exposure, the taxonomic composition in leaf packs was significantly different among treatments (Figure S1D; Global $\mathrm{R}=0.091, \mathrm{p}=0.007$, stress value $=0.19$) with the community composition in the control treatment being significantly different from the 4 P treatment $(\mathrm{R}=0.187, \mathrm{p}=0.019)$. We found no further significant differences in community composition among treatments. Similar to the surber
samples, the significant changes were primarily driven by decreasing abundances of G. pulex, L. fusca, and E. aenea and increasing abundances of Oligochaeta and chironomids (SIMPER analysis, Table S13).

3.5 Leaf litter decomposition

Leaf weight loss 29 days after the first exposure with lambda-cyhalothrin was significantly higher in the control treatment compared to the 2 P and 4 P treatments in the mesocosm channels (Fig. 4, p $=0.046$ and $\mathrm{p}=0.001$, respectively). We found no further significant differences in weight loss among treatments. Leaf weight loss before the first exposure (experimental day 0) was not significantly different among treatments (one-way ANOVA, $\mathrm{p}>0.05$).

Leaf weight loss 29 days after the first exposure with lambda-cyhalothrin was not significantly different among treatments before or after lambda-cyhalothrin treatments for the instream channels (one-way ANOVA, $\mathrm{p}>0.05$, data not shown).

4 Discussion

4.1 Macroinvertebrate drift

Macroinvertebrate drift increased significantly during and just after exposure to $0.1 \mu \mathrm{~g} \mathrm{~L}^{-1}$ lambdacyhalothrin in the mesocosm and instream channels. In general, increasing drift activity was most pronounced during the first exposure, but also the $2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ exposure provoked significantly increased drift activity for multiple species (note that drift rates were recorded for the third and the fourth exposure in the treatment receiving a total of 4 exposures). The initiation of mass drift events due pyrethroid insecticide exposure reflects hyperactivity and has been reported in multiple studies (e.g. Heckmann and Friberg, 2005; Beketov and Liess, 2008; Nørum et al., 2010).

We found a strong overlap in species exerting significant drift responses between the mesocosm and instream channels with strongest responses observed for G. pulex, A. standfussi, L. digitata/fusca, H. sulphurea, and A. ochripes. Wiberg-Larsen et al. (2016) documented that these species had low LC50 values ($<1 \mu \mathrm{~g} \mathrm{~L} \mathrm{~L}^{-1}$) subsequent to a 90 min exposure to lambda-cyhalothrin with the lowest LC50 obtained by A. ochripes ($0.028 \mu \mathrm{~g} \mathrm{~L}^{-1}$). Moreover, Wiberg-Larsen et al. (2016) showed that these species had strong behavioural responses to lambda-cyhalothrin exposure exerting hyperactivity at concentrations approximately $1 / 100$ of the LC50 which corresponds to the observations in our study. Moreover, the very low LC50 for A. ochripes suggests that recurring exposures with $0.1 \mu \mathrm{~g} \mathrm{~L}^{-1}$ lambda-cyhalothrin should prompt pronounced mortality. Indeed, we did observe mass death of A. ochripes pupae in the 2 P and 4 P treatments (own observations). Due to the strong similarity in the drift rate responses to lambda-cyhalothrin exposure between the mesocosm and instream channels, the increased discharge during the rain event occurring just before the third round of exposure in the instream channels did not significantly influence the results.

4.2 Macroinvertebrate community changes

Macroinvertebrate taxonomic composition in the mesocosm channels and instream channels changed significantly in consequence of lambda-cyhalothrin exposure, and the changes progressively increased with increasing number of exposures. The changes consistently occurred in stream channel habitats as well as inside deployed leaf packs and persisted for a minimum of 29 days after the first exposure. Macroinvertebrate taxa identified as main negative indicators (decreasing abundance with increasing number of lambda-cyhalothrin exposures) strongly overlapped with the taxa occurring with highest abundance in drift samples during lambdacyhalothrin exposure in both mesocosm and instream channels (e.g. G. pulex, A. standfussi, and L.
digitata(fusca). This suggests that the mass drift events provoked by lambda-cyhalothrin exposure was a key driver for the observed changes in taxonomic composition. Several taxa of especially Ephemeroptera, Plecoptera, and Trichoptera showed low abundances in unexposed control channels and a consistent absence in the 2 P and 4 P treatments, but due to the low abundances in only untreated control channels, the species indicator analysis (SIMPER) did not identify these as significant indicators for lambda-cyhalothrin exposures. Nonetheless, their occurrence patterns were systematic which corresponds well with previous observations that species belonging to these insect orders are generally considered highly sensitive to insecticide exposure (Wogram and Liess, 2001). Species of the chironomid subfamilies Orthocladiinae and Tanytarsini did not increase drift rates during lambda-cyhalothrin exposure consequently leading to increased post-exposure relative abundances. In general, Chironomidae contains numerous species covering a broad amplitude in insecticide sensitivity (Wiberg-Larsen et al., 2016). Hence, the identification level to subfamily cannot pinpoint a potential species turnover in Chironomidae mediated by lambda-cyhalothrin exposure. However, the dominant species of Orthocladiinae and Tanytarsini produced silky tubes on hard surfaces (Orthocladinae) or in sand (Tanytarsini) which could partly protect them from peak concentrations of lambda-cyhalothrin in the channel water rendering them less prone to suffer comprehensive effects.

The changes in macroinvertebrate taxonomic composition following lambda-cyhalothrin exposure in the instream channels were not as pronounced as in the mesocosm channels as significant differences were only found between channels receiving multiple exposures and the unexposed control channel. Moreover, no significant changes in taxonomic composition were observed inside the leaf packs in the instream channels. This is partly explained by a smaller increase in macroinvertebrate drift activity during lambda-cyhalothrin exposure. Importantly, however, a heavy
rain event occurring on experimental day 3-4 governed a substantial increase in discharge in Stavis stream which may have prompted increased macroinvertebrate drift in and out of the channels (e.g. Brittain and Eikeland, 1988) potentially clouding treatment mediated community changes.

4.3 Leaf decomposition

We found that macroinvertebrate induced leaf decomposition significantly decreased with increasing number of lambda-cyhalothrin exposures in the mesocosm channels whereas no significant treatment effects were found in the instream channels. The decreased leaf decomposition in Lemming stream channels probably reflects the observed community changes, especially the reduced abundance of G. pulex (see e.g. Aßmann et al., 2010). Similar effects were observed by Rasmussen et al. (2008) who exposed a macroinvertebrate assemblage (including G. pulex) to 0.1 $\mu \mathrm{g} \mathrm{L}^{-1}$ lambda-cyhalothrin for 90 minutes, although the authors maintained comparable abundance of G. pulex among treatments and explained the reduced leaf decomposition with treatment mediated reductions in shredding activity. Hence, our results may well reflect a combination of reduced abundance of key shredders as well as reduced feeding activity. The absence of treatment effects on leaf decomposition in the instream channels can be explained by comparable macroinvertebrate taxonomic composition inside leaf packs among treatments (discussed above). This further suggests that changed taxonomic composition overall was a more important driver of impaired leaf decomposition than reduced feeding activity in the mesocosm channels.

4.4 Perspectives

The seasonal timing of our experiments was optimal, as exposure was performed during the main spraying season for insecticides in Denmark. Secondly, we applied lambda-cyhalothrin in environmentally realistic concentrations and exposure durations (Liess et al., 1999; Rasmussen et
al., 2015). Moreover, Rasmussen et al. (2015) showed that small agricultural streams are often subjected to significant pesticide exposure 2-5 times within the months May, June, and July documenting the relevance of studying ecological effects of sequential exposures. Presence of ecologically significant insecticide concentrations are, however, stochastic depending on timing of precipitation during the spraying season (e.g. Solomon et al., 1996). Whereas the time between exposures was only two days in our study, reflecting a worst-case scenario, all channels in both experiments were subject to continuous recolonization from unexposed parts of streams with a diverse macroinvertebrate community, which increases the environmental relevance on one side but diverges from the worst-case scenario on the other side. In summary, our results most likely do not reflect a worst-case scenario as the absence of recolonization should generate stronger treatment effects. Such worst-case scenarios derive from longer stream reaches receiving simultaneous insecticide input, as is often the case in heavily utilized agricultural landscapes (McKnight et al., 2012), thereby reducing recolonization potential.

An important limitation in our study is the lacking ability to separate effects of sequential exposures from the effects of the total period of exposure, as channels receiving e.g. 1 and 4 pulses of lambdacyhalothrin had different total exposure durations (90 and 360 minutes of exposure). However, as the main aim of the study was to address the observed stronger ecological effects of pesticides in the field compared to single-exposure controlled laboratory and mesocosm studies, and as streams receiving multiple pulses of pesticide exposure, additionally, experience longer total exposure durations, the study setup naturally fulfils its purpose. Another limitation to our study is that the time since last exposure diverges among treatments with channels receiving more exposures having less time for recovery. However, as the maximum divergence (between treatments receiving 1 and 4 pulse exposures) was 4 days, and as the post-exposure observational period was comparably long
(ranging 23 to 27 days), the maximum divergence of 4 days is inconspicuous when compared to the length of the post-exposure observational period. Consequently, this discrepancy likely did not significantly influence the results.

Studies addressing effects of sequential pesticide exposures on macroinvertebrate communities or single species are scarce (but see Pestana et al., 2009; Dennis et al., 2012; Mohr et al., 2012; Finotello et al., 2017; Russo et al., 2018; Bray et al., 2019), highlighting the relevance of the present study. The numerous potential combinations of active ingredients, time between exposures, and exposure concentrations control types and intensity of ecological effects (e.g. Pestana et al., 2009; Mohr et al., 2012), but due to the scarcity in published studies addressing sequential exposures, this remains largely unknown. Nevertheless, progressing ecotoxicological research towards incorporating sequential exposures may provide key insights that can help explaining field-based observations of pesticide induced effects occurring at surprisingly low exposure concentrations (Liess et al., 2016). Our study further indicates that observed strong effects of pesticide exposure on macroinvertebrate drift rates can be translated into community changes that may persist for months even in the presence of upstream colonizers. However, our study also lends support to the observations that functional measures of stream ecosystems may be less sensitive endpoints compared to structural changes.

Acknowledgements

The study was financed by Danish Environmental Protection Agency (journal no. 667-00059). Further, the Danish EPA granted permission to expose experimental channels in Stavis stream to lambda-cyhalothrin. Tinna Christensen provided figure layout. Moreover, we are thankful for many constructive comments by the reviewers that helped improve the overall quality of the manuscript.

References

Aßmann, C., Rinke, K., Nechwatal, J., Von Elert, R. 2010. Consequences of the colonization of leaves by fungi and oomycetes for leaf consumption by a gammarid shredder. Freshwater Biology 56, 839-852.

Beketov, M., Liess, M. 2008. Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Archives of Environmental Contamination and Toxicology 55, 247-253.

Beketov, M., Kefford, B. J., Schafer, R. B., Liess, M., 2013. Pesticides reduce regional biodiversity of stream invertebrates. Proceeding of the National Academies of Sciences U.S.A. 27, 11039-11043.

Berghahn, R., Mohr, S., Hübner, V., Schmiediche, R., Schmiedling, I., Svetich-Will, E., Schmidt, R. 2012. Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquatic Toxicology 122-123, 56-66.

Boye, K., Lindstrom, B., Bostrom, G., Kreuger, J. 2019. Long-term data from the Swedish national environmental monitoring program of pesticides in surface waters. Journal of Environmental Quality 48, 1109-1119.

Bray, J.P., Nichols, S.J., Keely-Smith, A., Thompson, R., Bhattacharyya, S., Gupta, S., Gupta, A., Gao, J., Wang, X., Kaserzon, S., Mueller, J.F., Chou, A., Kefford, B.J. 2019. Stressor dominance and sensitivity-dependent antagonism: Disentangling freshwater effects of an insecticide among cooccurring agricultural stressors. Journal of Applied Ecology 56: 2020-2033.

Brittain, J.E., Eikeland, T.J., 1988. Invertebrate drift - A review. Hydrobiologia 166, 77-93.

Dennis, N., Tiede, K., Thompson, H. 2012. Repeated and multiple stress (exposure to pesticides) on aquatic organisms. Supporting Publications. EN-347, 147 pp.

Finotello, S., Feckler, A., Bundschuh, M., Johansson, F. 2017. Repeated pulse exposures to lambdacyhalothrin affect the behavior, physiology, and survival of the damselfly larvae Ischnura graellsii (Insecta; Odonata). Ecotoxicology and Environmental Safety 144, 107-114.

Graeber, D., Jensen, T. M., Rasmussen, J. J., Riis, T., Wiberg-Larsen, P., Baattrup-Pedersen, A. 2017. Multiple stress response of lowland benthic macroinvertebrates depends on habitat type. Science of the Total Environment 599-600, 1517-1523.

Heckmann, L.H., Friberg, N., Ravn, H. W. 2005. Relationship between biochemical biomarkers and pre-copulatory behaviour and mortality in Gammarus pulex following pulse-exposure to lambdacyhalothrin. Pesticide Management Science 61, 627-635.

Heckmann, L. H., Friberg, N. 2005. Macroinvertebrate community response to pulse exposure with the pyrethroid insecticide lambda-cyhalothrin using in-stream mesocosms. Environmental Toxicology and Chemistry 24, 582-590.

Kronvang, B., Strom, H.L., Hoffmann, C.C., Laubel, A., Friberg, N. 2004. Subsurface tile drainage loss of modern pesticides: Field experiment results. Water Science and Technology 49: 139-147.

Lewis, K.A., Tzilivakis, J., Warner, D.J., Green, A. 2016. An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal 22: 1050-1064.

Liess, M., Schulz, R., Liess, M. H., Rother, B., Kreuzig, R. 1999. Determination of insecticide contamination in agricultural headwater streams. Water Research 33, 239-247.

Liess, M., Foit, M., Becker, A., Hassold, E., Dolciotti, I., Kattwinkel, M., Duquesne, S. 2013. Culmination of Low-Dose Pesticide Effects. Environmental Science \& Technology 47, 8862-8868.

Liess, M., Foit, K., Knillmann, S., Schäfer, R. B., Liess, H. D. 2016. Predicting the synergy of multiple stress. Scientific reports 6,32965 .

Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., Schäfer, R. B. 2014. Organic chemicals jeopardize the health of freshwater ecosystems at the continental scale. Proceedings of the National Academies of Science U. S. A. 111, 9549-9554. McKnight, U.S., Rasmussen, J.J., Kronvang, B., Bjerg, P.L., Binning, P. 2012. Integrated assessment of the impact of chemical stressors on surface water ecosystems. Science of the Total Environment 427-428, 319-331.

Mohr, S., Berghahn, R., Schmiediche, R., Hubner, V., Loth, S., Feibicke, M., Mailahn, W., Wogram, J. 2012. Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquatic Toxicology 110-111, 25-36.

Neumann, M., Schutz, R., Schafer, K., Muller, W., Mannheller, W. 2002. The significance of entry routes as point and non-point sources of pesticides in small streams. Water Research 36, 835-842.

Nørum, U., Friberg, N., Jensen, M.R., Pedersen, J.M., Bjerregaard, P. 2010. Behavioural changes in three species of freshwater macroinvertebrates exposed to the pyrethroid lambde-cyhalothrin: Laboratory and stream microcosm studies. Aquatic Toxicology 98, 328-335.

Rasmussen, J.J., Friberg, N., Larsen, S.E., 2008. Impact of lambda-cyhalothrin on a macroinvertebrate assemblage in outdoor experimental channels: Implications for ecosystem functioning. Aquatic Toxicology 90, 228-234.

Rasmussen, J.J., Wiberg-Larsen, P., Kristensen, E.A., Cedergreen, N., Friberg, N. 2013a.
Pyrethroid effects on freshwater invertebrates: A meta-analysis of pulse exposures. Environmental Pollution 182, 479-485.

Rasmussen, J.J., Nørum, U., Wiberg-Larsen, P., Kristensen, E.A., Friberg, N. 2013b. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquatic Toxicology 140141, 340-345.

Rasmussen, J.J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Cedergreen, N., McKnight, U.S., Kreuger, J., Jacobsen, D., Kristensen, E.A., Friberg, N. 2015. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research 84, 25-32.

Rasmussen, J.J., Reiber, L., Holmstrup, M., Liess, M. 2017. Realistic pesticide exposure through water and food amplifies long-term effects in a Limnephilid caddisfly. Science of the Total Environment 580, 1439-1445.

Russo, R., Becker, J.M., Liess, M. 2018. Sequential exposure to low levels of pesticides and temperature stress increase toxicological sensitivity of crustaceans. Science of the Total Environment 610-611, 563-569.

Schulz, R. 1997. Aquatische Ökotoxicologie von Insektiziden. Ecomed, Angewandter Umweltschutz, 167 pp.

Schulz, R., Liess, M. 1999. A field study of the effects of agriculturally derived insecticides input to stream invertebrate dynamics. Aquatic Toxicology 46, 155-176.

Solomon, K. B., Baker, D. B., Richards, R. P., Dixon, K.R., Klaine, S. J., La Point, T. W., Kendall, R. J., Weisskopf, C.P., Giddings, J, Hall, L. W., Williams, W. M. 1996. Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry 15, 31-76.

Vijverberg, H. P. M., van den Bercken, J. 1990. Neurotoxicological effects and the mode of action of pyrethroid insecticides. Critical Reviews of Toxicology 21, 105-126.

Wiberg-Larsen, P., Graeber, D., Kristensen, E.A., Baattrup-Pedersen, A., Friberg, N., Rasmussen, J.J. 2016. Trait characteristics determine pyrethroid sensitivity in nonstandard test species of freshwater macroinvertebrates: A reality check. Environmental Science \& Technology 50, 49714978.

Wogram, J., Liess, M. 2001. Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bulletin of Environmental Contamination and Toxicology 67, 360-367.

Wolfram, J., Stehle, S., Bub, S., Petschick, L. L., Schulz, R. 2018. Meta-analysis of insecticides in United States surface waters: Status and future implications. Environmental Science \& Technology 52, 14452-14460.

Figure captions

Fig. 1. Macroinvertebrate drift rates in the mesocosm channels. Drift rate represents the average number of individuals caught in drift (number of individuals hour ${ }^{-1} \pm \mathrm{SE}$) during (90 min) and immediately after (120 min) exposure to lambda-cyhalothrin. Values are shown for 6 different dominant taxa for treatments receiving no lambda-cyhalothrin, and 1,2 , and 4 pulses of $0.1 \mu \mathrm{~g} \mathrm{~L}^{-1}$ lambda-cyhalothrin for 90 minutes $(\mathrm{n}=3)$. For the treatment receiving at total of 4 pulses, drift rates are shown for both the third and fourth exposure. For all species and all exposures, the increase in drift rate was significant compared to untreated controls (paired t-test, $\mathrm{p}<0.05$). Note the exponential scale on the Y -axis.

Fig. 2. Macroinvertebrate drift rate in the instream channels. Drift rate represents the sum of individuals (hour ${ }^{-1}$) caught in drift nets during $(90 \mathrm{~min})$ and immediately after $(120 \mathrm{~min})$ the first exposure to lambda-cyhalothrin. Drift rates for all taxa presented in the figure were significantly higher in channels exposed to lambda-cyhalothrin compared to untreated controls. Note the exponential scale on the Y -axis.

Fig. 3. nMDS scaling of Bray-Curtis similarities on macroinvertebrate communities on riffles (A,B) and leaf packages (C,D), respectively, in mesocosm channels. Macroinvertebrate taxonomic composition is depicted before lambda-cyhalothrin exposure on experimental day $0(\mathrm{~A}, \mathrm{C})$ and after exposure on experimental day $29(\mathrm{~B}, \mathrm{D})$. Macroinvertebrate taxonomic composition is shown for control treatments (CON) and treatments receiving 1, 2, and 4 pulses of lambda-cyhalothrin (1P, 2P, and 4 P , respectively) with 2 days between exposures.

Fig. 4. Mean weight loss (g) of leaf material in the mesocosm channels just before (experimental day 0) and 29 days after the first lambda-cyhalothrin exposure. $\mathrm{CON}=$ untreated control channels; $1 \mathrm{P}, 2 \mathrm{P}$, and $4 \mathrm{P}=$ channels treated with one, two, and four pulses of lambda-cyhalothrin, respectively. Groups that do not have letters in common are significantly different. Asterisks indicate significant differences between days 0 and 29 .

