
Geosci. Model Dev., 14, 1885–1897, 2021
https://doi.org/10.5194/gmd-14-1885-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Rapid development of fast and flexible environmental models: the
Mobius framework v1.0
Magnus Dahler Norling1, Leah Amber Jackson-Blake2, José-Luis Guerrero Calidonio1, and James Edward Sample2

1Norwegian Institute for Water Research, 0349 Oslo, Norway
2Norwegian Institute for Water Research, 4879 Grimstad, Norway

Correspondence: Magnus Dahler Norling (magnus.norling@niva.no)

Received: 27 January 2020 – Discussion started: 28 April 2020
Revised: 9 December 2020 – Accepted: 21 February 2021 – Published: 9 April 2021

Abstract. The Mobius model building system is a new open-
source framework for building fast and flexible environmen-
tal models. Mobius makes it possible for researchers with
limited programming experience to build performant mod-
els with potentially complicated structures. Mobius models
can be easily interacted with through the MobiView graphi-
cal user interface and through the Python programming lan-
guage. Mobius was initially developed to support catchment-
scale hydrology and water-quality modelling but can be used
to represent any system of hierarchically structured ordinary
differential equations, such as population dynamics or tox-
icological models. Here, we demonstrate how Mobius can
be used to quickly prototype several different model struc-
tures for a dissolved organic carbon catchment model and
use built-in auto-calibration and statistical uncertainty anal-
ysis tools to help decide on the best model structures. Over-
all, we hope the modular model building platform offered by
Mobius will provide a step forward for environmental mod-
elling, providing an alternative to the “one size fits all” mod-
elling paradigm. By making it easier to explore a broader
range of model structures and parameterisations, users are
encouraged to build more appropriate models, and in turn
this improves process understanding and allows for more ro-
bust modelling in support of decision making.

1 Introduction

Environmental models are increasingly used both to for-
malise the current state of scientific knowledge and to sup-
port policy and practical decision making. There is therefore
a strong need for robust models. Present-day system knowl-

edge, new data sources (for instance from remote sensing),
and the practical experience of many modellers suggest that
model structure and complexity should be tailored to the sys-
tem of interest based on (i) the research or policy question
of interest, (ii) the response characteristics of the system,
and (iii) the availability of observational data. When devel-
oping a model application, a compromise therefore needs to
be reached between the realism with which natural processes
are represented as a set of equations, whether those processes
are important for the specific objectives of the modelling
exercise, whether it is computationally feasible to represent
those processes, and whether data are available to evaluate
the hypotheses put forward by the model (Clark et al., 2015).
Within catchment hydrology and water-quality modelling,
for example, the dominant processes that dictate the system
response to external drivers vary according to the scale of
interest, with different processes revealing themselves to be
the main driver as scale increases from plot to hillslope to
catchment (e.g. Sivapalan et al., 2003). Appropriate process
representation may also vary from catchment to catchment
(Kavetski and Fenicia, 2011; Wagener et al., 2007). Despite
this, many popular water-quality models provide limited flex-
ibility for customising model structure. For example, spa-
tially semi-distributed models typically allow users to define
their own hydrological response units (HRUs), but the pro-
cess representation within each HRU is essentially fixed. It
is common for users to make implicit changes to the model
structure, for example by setting parameter values to zero or
± infinity, but this approach is both inflexible and opaque.
Inflexible model structures are problematic when attempt-
ing to generalise complex models developed in areas with
detailed monitoring data to less well-studied regions with

Published by Copernicus Publications on behalf of the European Geosciences Union.



1886 M. D. Norling et al.: The Mobius framework v1.0

sparse data. Overfitting is a serious problem for many en-
vironmental models and several authors have expressed con-
cerns regarding testability or falsifiability of model simula-
tions (see, e.g. Kirchner, 2006). The predominance of inflex-
ible model structures has led to a vast number of models,
often developed for a specific location or to answer a spe-
cific question and then (perhaps inappropriately) transferred
elsewhere (e.g. hydrology models are considered in Beven,
2012). To tackle this issue, calls have been made for open-
source community models (e.g. Mooij et al., 2010; Weiler
and Beven, 2015) and/or so-called “models of everywhere”,
where the idea is to move from generic models that are cus-
tomised to particular locations, for example through appro-
priate parameterisation, to models that are specific to partic-
ular places (Blair et al., 2019).

Modular (or flexible) modelling systems try to address
these issues by providing a unified computational environ-
ment within which models can be developed and therefore
offer an attractive and increasingly popular alternative to
the “one size fits all” paradigm. A well-designed framework
makes it possible to quickly explore alternative model struc-
tures and to explicitly customise existing models for specific
applications. Model evaluation and comparison then become
significantly easier, as all model variants can use the same
input and output data formats and share components of the
same code base where appropriate. The user can therefore be
certain that differences in output are due to intended struc-
tural changes and not to implementation differences (e.g. in
data pre-processing, secondary model components, or nu-
merical solving schemes), meaning more significant scien-
tific insight can be gained when comparing alternative pro-
cess representations (Mooij et al., 2010). Modular frame-
works also make it possible for users to extend or combine
previously developed models, for example by quickly devel-
oping multiple variants of a water-quality model, all under-
pinned by the same hydrology module.

Although modelling frameworks have many advantages
compared to traditional (fixed structure) approaches, they are
difficult to implement in practice as building a flexible, gen-
eralisable framework requires considerably more program-
ming expertise than building a static model. Many modellers
have skills in interpreted languages such as Python or R,
which are reasonably well-suited to rapid prototyping of al-
ternative model structures. However, exploring uncertainty in
model predictions, or formally comparing model structures,
typically requires methods such as Bayesian MCMC, which
involves running each model thousands or even millions of
times. This can be a big limitation for models coded in in-
terpreted languages, which are comparatively slow. One so-
lution is to build models using compiled languages like C++
or Fortran, but many modellers lack the time or inclination to
develop the necessary programming skills.

This paper presents a new modelling framework, Mobius,
which allows flexible and fast model building by researchers
with a relatively basic level of programming. Mobius mod-

els meet modern demands for computational speed and al-
low for the complexity of process representation to be varied
depending on progressing system knowledge, research ques-
tion, or scale. Several hydrological model building frame-
works exist to date, such as FUSE (Clark et al., 2008), SU-
PERFLEX (Fenicia et al., 2011), FARM (Euser et al., 2013),
and SUMMA (Clark et al., 2015). These all allow predefined
components to be connected in user-specified ways to create
a model, with a focus on catchment hydrology. The frame-
work presented here takes these existing approaches further,
allowing the user to define any component or process. It is
therefore, to our knowledge, one of the first frameworks to
be fully generalisable; although initially developed to sup-
port catchment-scale hydrology and water-quality modelling,
it can be used to represent any system of hierarchically struc-
tured ordinary differential equations (ODEs), such as popu-
lation dynamics or toxicological models. Moreover, the Mo-
bius framework does more of the heavy lifting of organising
the program structure than what we find in other frameworks.
The user can create models with a complex structure without
having to organise that structure explicitly using program-
ming architecture. A range of popular hydrology and water-
quality models have already been implemented in Mobius,
for instance the INCA family of models (Futter et al., 2007,
2014; Jackson-Blake et al., 2016; Wade et al., 2002; White-
head et al., 1998) and the Simply models (Jackson-Blake et
al., 2017); these are available to use either as stand-alone
models or as starting points for further development and cus-
tomisation.

In the remainder of the paper, we first describe the core
of the Mobius framework (Sect. 2). We then describe tools
for interacting with Mobius models, including the MobiView
application (Sect. 3.1.1), a user-friendly graphical user in-
terface (GUI) compatible with all Mobius models, and the
Mobius Python wrapper (Sect. 3.1.2), which provides Python
bindings to core Mobius functionality and incorporates many
powerful optimisation and uncertainty estimation tools from
the Python ecosystem. We then demonstrate the utility of
Mobius by developing a new illustrative dissolved organic
carbon catchment model, including rapid development of a
variety of potential model structures, and using the tools
available through the Python wrapper to choose an appropri-
ate structure for model application in a Norwegian catchment
(Sect. 3.2). We also include a model run speed benchmarking
test to demonstrate that performance is only marginally com-
promised by the increase in flexibility (Sect. 3.3). We finish
by discussing the current scope and limitations of the frame-
work, as well as future plans (Sect. 4).

2 Overview of Mobius

Mobius is a general framework for building models consist-
ing of ordinary differential equations (ODEs) and equations
evaluated only once per time step (discrete time step equa-

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021



M. D. Norling et al.: The Mobius framework v1.0 1887

tions). Only limited programming knowledge is needed to
build or modify Mobius models. When building a Mobius
model, the user specifies what state variables are in the model
and what equations govern these. Equations can depend on
the values of input time series, such as meteorological forc-
ings, and be tuned using parameters. The core Mobius frame-
work is built using highly optimised C++ code, but users
can create new models or adapt existing ones by adding new
model equations, parameters, inputs, and dependencies be-
tween these, without having a detailed understanding of C++.

When programming models without a framework one
must typically do a significant amount of work when adding
in new processes or parameters. This may involve putting
the mathematical equations in the right place in the model
evaluation code or even restructuring the model evaluation
code, recording the value of the equations at each time step
for later exporting, packing various values into structures for
use inside ODE integrators (something that can be daunting
to inexperienced programmers), updating parameter file for-
mats and parsers, and updating the code that exports the re-
sult time series to the desired final format. Any user interface
or plotting code that is designed to visualise the new pro-
cess will typically also need updating. The Mobius frame-
work automatically takes care of these things, allowing the
researcher to focus only on the mathematical formulation of
the processes. Even with this flexibility, run speeds are com-
parable to custom-coded C++ models and considerably faster
than models written in languages such as Python or R (see
Sect. 3.3).

The framework exposes two application programming
interfaces (APIs): the model builder API and the model
interaction API. The model builder API allows for speci-
fication of models and modules. Finished models can be
interacted with through the model interaction API. The
following is an overarching description. More detail is given
in “Documentation\model_builder_documentation.pdf”
in the Mobius repository. The core
implementation is described in the
“Documentation\framework_implementation_documentation.
pdf” and in the source code itself (see Sect. 5).

2.1 The model builder API

The model builder API allows a model creator to register
model entities by name (a string) and associate metadata with
them. Each registration procedure returns a handle that is
used to refer to that entity. Model entities include parame-
ters, input time series, and equations (state variables).

The code that is used to evaluate each equation is provided
in-line in the model building code. Each equation can use
the (present or past) value of other entities that have been
registered by referring to them by their handles. Each equa-
tion must return a single value per evaluation. In the simplest
case, each equation is evaluated once per time step, resulting
in a time series. An equation that is registered as an ODE is

instead integrated over the time step, typically using smaller
sub-steps (the size of the sub-time steps can depend on con-
vergence criteria).

In more complicated setups, parameters and inputs can in-
dex over one or more index sets. Index sets can be viewed as
“response units” in a loose way, meaning for instance a river
reach or sub-catchment in a catchment model, a size class
or species in a biological population model, or a grain size
and density class for microplastic particles. For example, in a
catchment model some processes may have different param-
eterisations depending on land-use class or sub-catchment.
The land-use index set could then contain the indexes “For-
est” and “Agricultural” to allow for separate evaluation of the
common processes for these two land-use types.

The equations are automatically distributed over auto-
generated arrangements of batches. Batches are groups of
equations that are evaluated for each (tuple of) index(es) in
some collection of index sets:

– If an equation uses the (current time step) output of an-
other, it will be evaluated after it.

– An equation will be indexed by all the index sets that
index the entities whose values the equation uses.

– Equations are grouped into batches that index over the
same index sets if they can be ordered consecutively
according to the above criteria. In special cases, batch
grouping is also determined by what ODE solver is
used.

For instance, if an equation depends on a parameter that has
a separate value per “Landscape unit”, then that equation
will also have a separate value per “Landscape unit”. Fur-
thermore, special types of equations and value access syntax
allows an equation to aggregate the value of another equation
over an index set or access values of entities from a different
tuple of indexes to the one being currently considered. In this
way, one can for instance let flow from different parts of the
landscape go into a single river.

As an example, say that one wants to describe the input of
water to the soil qin, which in this example is different per
land-use class. Let i be the time step (daily in this case, but
the framework allows for configurable time step sizes) and
let u be a land-use class. Let prain be the amount of rain per
day and tair be the air temperature (these could be input time
series; in this short example we omit how we compute snow
fall). Let DDFmelt be a degree-day factor for snow melt (a
parameter) and let dsnow be the computed snow depth. Then
a simple equation describing the water input to soil could be

qu
in,i = prain,i +min(du

snow,i−1,DDFu
melttair,i). (1)

This system can be added to a Mobius model as follows (code
for computing snow depth and registration of units is omit-
ted).

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021



1888 M. D. Norling et al.: The Mobius framework v1.0

Since the “Degree-day snow melt factor” belongs to the
“Snow parameters” parameter group, which is set to index
over the “Landscape units” index set, the equation “Water
input to soil” will (when the model is later run) be evaluated
per land-use class since it uses the value of this parameter.
If one also makes it so that “Rain fall” is indexed over the
“Sub-catchment” index set, the equation is evaluated per pair
of (landscape unit, sub-catchment) indexes. Setting the in-
dex set dependencies of inputs can even be done during the
model interaction stage, such as through an input file. Note
that “Degree-day snow melt factor” is given a unit and de-
fault min and max values. These are not used in the model
run, but they are metadata that can, e.g. be displayed in a UI
to guide the model user.

What indexes each index set contains can be specified dur-
ing the later model interaction step, where they can, e.g. be
loaded from a parameter file or set by a GUI. Land-use and
river-connectivity structure in a catchment model, for exam-
ple, can thus be specified without changing or recompiling
the model.

ODE equations are organised into batches by the frame-
work depending on the selected integrator algorithm. At
present, one Runge–Kutta 4 ODE integrator based on the
DASCRU algorithm (Wambecq, 1978) is bundled with Mo-
bius and there are wrappers for the Boost Odeint solvers (Ah-
nert and Mulansky, 2011). Other solvers can be made acces-
sible in Mobius without having to modify the core framework
code.

When a model is run, all state variables (equations) are
recorded each time step, resulting in a time series corre-
sponding to each of them. When equations are evaluated for
multiple indexes, a time series is produced for every index
combination. In this way you may for instance get a sepa-
rate “Soil water volume” time series for each sub-catchment
and land-use class in a hydrology model. This exhaustive
recording facilitates introspection into model processes, for
instance in the MobiView user interface (Sect. 3.1.1), which
can be used during all stages of model development. This
way, a model can be built iteratively, adding one process at a
time and assessing how it performs.

The modular system in Mobius allows various modules to
be combined. A module is simply a procedure that registers
entities with a model and provides the associated equation
code. A module can access entities that were registered in

other modules. This is done by obtaining the handle to the
other entity by loading it from its string name. One benefit
of the fact that the framework organises the main evaluation
loops of the model is that ODE equations from a module can
be solved in the same ODE integrator batch as the ODE equa-
tions from another module without any effort by the model
creator. In this way one module can extend the ODE systems
of another, creating a larger coupled set of equations or even
override individual equations from the other module without
creating a separate version of the source code of that other
module.

2.2 The model interaction API

Any model created using the model builder API can be com-
piled to a dynamically linked library (.dll on Windows, .so
on Linux) or can be included into another C++ project. The
model interaction API (which is exported through the library)
can be used to create programs that use the model for spe-
cific purposes. We have created a wrapper for the API in the
Python programming language (Sect. 3.1.2). It is possible to
call these functions from any language with a C foreign func-
tion interface. Some of the things one can do with this API
are:

– Create a “dataset” object that can be structured for a
concrete setup of the model with given parameter values
and input time series.

– Set specific index set structures in the dataset. In catch-
ment models this allows for setting up the river-structure
and land-use classes.

– Run the model one or more times with a given dataset.
One can also make thread-safe (and fast) copies of the
dataset to run the model multiple times in parallel.

– Read the resulting time series of any model equation
(for a given index tuple corresponding to this equation’s
index set dependencies).

– Read the full structure of the model and accompanying
metadata that was registered in the model building pro-
cess. One can, e.g. extract a list of the names of all the
parameters or equations, their units, descriptions, index
set dependencies, etc.

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021



M. D. Norling et al.: The Mobius framework v1.0 1889

Model entities are interacted with by referring to the string
name that they were registered with. Mobius supports a cus-
tom text format for parameter and input files that is tailor
made to be convenient to edit by hand. A json format for
parameter and input files is also supported, which could for
instance be used for serialisation and web communication.
The API also makes it easy to add support for new file or
data formats.

The MobiView user interface (Sect. 3.1.1) is an example
of a program built using this API. Other options are mak-
ing command line applications, R modules, (for instance us-
ing Rcpp; see Eddelbuettel and François, 2011), wrappers to
other languages, or complex setups such as running the same
model for multiple climate scenarios, sensitivity analysis, en-
semble runs of multiple models, or autocalibration (more on
this in Sect. 3.1.2). The API can also be used to couple Mo-
bius models to models that were not created in Mobius.

3 Demonstration of Mobius

3.1 Tools for convenient interaction with Mobius
models

Compiled Mobius models can be interacted with in two user-
friendly ways, using a GUI or Python.

3.1.1 MobiView GUI

The MobiView GUI can interact with any model that is com-
piled using the standard Mobius .dll interface. It is ideal for
model users and developers to quickly explore Mobius model
parameters, equations, and inputs, and to carry out manual
calibration. The GUI displays a structured organisation of pa-
rameters, associated descriptions, and recommended ranges.
It is easy to find parameters using a name search. The work-
flow for manual calibration is convenient: the user can update
a parameter value, then click a button (or keyboard hot key)
to re-run the model and immediately see the results in the
plot view (Fig. 1).

There are various plot modes and ways to customise the
plotting to be able to analyse the model result time series.
For instance, the user can switch between daily values and
monthly and yearly aggregations. There are also residual
plots, residual distribution histograms, and quantile–quantile
plots for analysing the performance of a result time series
compared to an observed time series. MobiView computes
several different goodness-of-fit statistics (including, for ex-
ample bias, mean absolute error, mean squared error, and
Nash–Sutcliffe efficiency; Nash and Sutcliffe, 1970). Any
observation time series can be loaded for use in calibration.
Other features include visualisation of branched river struc-
tures (for hydrology models), ability to export results to csv
formats, customisation of plot visual layout, and export of
plots to image or pdf formats.

MobiView is developed using the Ultimate++ framework
and the ScatterCtrl package (http://ultimatepp.org, last ac-
cess: 2 February 2021).

3.1.2 Python wrapper and integration with model
auto-calibration and uncertainty analysis
packages

Users can interact with compiled Mobius models using a
Python wrapper. Python is a high-level programming lan-
guage well suited to rapid development and prototyping, as
well as being more accessible to domain scientists than com-
piled languages such as FORTRAN or C++. Python also
offers a wide range of additional packages, including tools
for model optimisation, calibration, and uncertainty analysis.
ODE-based models implemented in “pure” Python often suf-
fer from poor performance. By implementing the model us-
ing Mobius and communicating with it via the Python wrap-
per, users can therefore benefit from both the performance
of C++ and the flexibility and modules available in Python.
Although the wrapper adds a small computational overhead,
it generally offers excellent performance because for most
ODE-based models with realistic levels of complexity, the
main performance bottleneck will be running the model it-
self and not communicating through the Python interface.

The wrapper makes it easy for users to modify input
time series and parameter values, run the model, and ex-
tract time series of results. This makes it convenient to script
many types of sensitivity and uncertainty analysis setups
that are reusable across different models. Functions are pro-
vided for plotting and visualising outputs, and for calculat-
ing a range of commonly used goodness-of-fit statistics. It is
also straightforward to connect Mobius models to other tools
in the Python ecosystem and to parallelise multiple model
runs across many processes or cores. For example, auto-
calibration can be implemented by defining a Python func-
tion to update parameter values, run the model, and return
an appropriate summary of the results (such as the sum of
squared errors). This “loss function” can then be minimised
using any of the tools available via Python.

The current Python wrapper provides access to generic
functions to aid model auto-calibration and uncertainty es-
timation. Key dependencies are the Python packages lmfit
(Newville et al., 2014) and emcee (Foreman-Mackey et al.,
2013). Lmfit offers a consistent interface to a range of op-
timisers (Levenberg–Marquardt, Nelder–Mead, etc.) as well
as providing a “Parameters” class that allows users to de-
fine plausible parameter ranges (e.g. “priors” in the context
of a Bayesian analysis) and choose which model parame-
ters should be varied and which fixed. Auto-calibration using
lmfit is typically fast and most optimisers return estimates
of confidence intervals for the fitted parameters. It therefore
provides an excellent starting point for further investigation.
For more complex models with potentially multi-modal like-
lihoods or posterior distributions, or for users wishing to ex-

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021

http://ultimatepp.org


1890 M. D. Norling et al.: The Mobius framework v1.0

Figure 1. The MobiView user interface running INCA-N, a catchment nitrogen model. The image shows the module and parameter group
structure of this model (top left), some editable parameters (top centre), and a plot that shows a comparison between modelled and observed
flow of water in the river. Any time series shown in the Equation and Input lists on the right can be selected for plotting here.

plore parameter-related uncertainty in more detail (e.g. by
explicitly specifying a likelihood function), emcee provides
a state-of-the-art Markov chain Monte Carlo (MCMC) algo-
rithm based on the affine-invariant ensemble sampler (Good-
man and Weare, 2010). Emcee’s ensemble sampler supports
various methods for parallelisation and is well-suited to ex-
ploring the complicated and inhomogeneous posterior dis-
tributions characteristic of many ODE-based environmen-
tal models. Although more computationally intensive than
optimisation, sampling using MCMC provides much richer
information describing the (Bayesian) posterior probability
of the model’s parameters, given the calibration dataset and
the underlying assumptions. The Python wrapper includes
functions for visualising MCMC chains and creating “corner
plots” of the posterior distribution, which provide valuable
diagnostic information that can be used to inform iterative
refinement of the model structure within the core Mobius
framework. We give examples of how this can be used in
Sect. 3.2.4.

A convenient approach to interacting with Mobius mod-
els via the Python wrapper is to use Jupyter Note-
books (Kluyver et al., 2016), which provide an effec-
tive platform for well-documented, shareable, and repro-

ducible modelling workflows. The Mobius GitHub reposi-
tory (see Sect. 5) provides example code illustrating how
to interact with models via the Python wrapper, includ-
ing auto-calibration of the nutrient model SimplyP (see the
“PythonWrapper\SimplyP\simplyp_calibration.ipynb” file
in the repository).

3.2 Rapid model development – a case study

We now demonstrate how Mobius can be used to easily build
a variety of model structures and then how the tools made
available through the Python wrapper can be used to decide
on an appropriate model structure for a particular study area,
given the observed data available. To illustrate this, we will
develop some simple example alternative model structures to
simulate daily river dissolved organic carbon (DOC) concen-
trations in a small upland catchment in Norway. Stream DOC
concentrations have been rising in recent decades in many
regions around the world due to a combination of recovery
from acidification and climate change (Monteith et al., 2007;
de Wit et al., 2016) and model predictions of potential future
changes are of interest in terms of drinking water quality,
carbon cycling, and climate feedbacks.

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021



M. D. Norling et al.: The Mobius framework v1.0 1891

3.2.1 Case study site and data for model selection

The study site is a small stream and associated catchment in
southeast Norway, one of the main inlets to the lake Langt-
jern (510–750 m a.s.l.; 60.371◦ N, 9.727◦ E). The catchment
has an area of 0.8 km2 and land cover is 80 % pine forest on
thin mineral soils and 20 % bog on deeper peat. Mean an-
nual temperature, precipitation, and discharge (1986–2015)
are 2.5 ◦C, 901, and 650 mm, respectively.

Water discharge and DOC observations were used for
model selection. Discharge is difficult to simulate in this
catchment, due to a combination of short water residence
times and a flashy hydrology, and uncertainty in the observed
discharge (which until 2014 was based on a water balance for
the lake; see de Wit et al., 2018) is high. Since 1986, stream
water grab samples have been collected weekly to monthly
and analysed for total organic carbon (TOC) (see de Wit
et al., 2014, for details of sampling methods and chemical
analysis). In this catchment, TOC is essentially equivalent to
DOC. Starting in August 2014, there is also daily soil tem-
perature data (at 15 and 20 cm depths).

3.2.2 General model setup

The modelling aim is to reproduce long-term daily in-stream
DOC concentrations rather than a detailed carbon balance.
All DOC model versions are built on a common hydrol-
ogy module, SimplyQ, which was developed for SimplyP
(Jackson-Blake et al., 2017), excluding the deeper soil flow
path. In brief, water and associated DOC may be trans-
ported from the land to the stream via “quick” flow (infil-
tration and saturation excess overland flow and deeper by-
pass flow) and/or shallow soil water flow, which is some-
what slower. DOC fluxes to the stream are therefore simply
via soil water flow, given by Qs[DOC]s, and via quick flow,
as Qquick[DOC]s, where Qs is soil water flow, Qquick is the
quick flow, and [DOC]s is the soil water DOC concentration.
Soil water and quick flow vary through time as a function
of precipitation, evapotranspiration, soil moisture levels and
runoff to the stream. The factors that control the variation
through time of [DOC]s are investigated through the model
selection process described below. As there are no upstream
inputs in our study area, the mixing of these different water
sources gives the in-stream DOC concentration.

Models were run for the period from 1986–2016 using in-
put meteorological data (air temperature and precipitation)
from a local weather station operated by http://met.no, last
access: 20 January 2020, the Norwegian Meteorological In-
stitute.

3.2.3 Carbon model structures

The model development process starts with a statistical ex-
ploration of the observed data and knowledge of the litera-
ture, and these together are used to generate a list of potential

processes to include and different possible formulations for a
given process. These are then translated into a range of model
structures. In this example, a strong correlation was found
between observed stream DOC concentration and modelled
soil temperature, but there are questions as to the appropriate
representation of this process, and longer-term processes and
hydrological effects such as snowmelt dilution may also be
important. To this end, six model structures were developed
(the DOC-related model parameters are defined in Table 1):

1. Simple linear relationship between soil water DOC con-
centration and soil temperature. The linear relationship
describes an empirical relationship between equilibrium
soil water DOC concentration and soil temperature,
Tsoil:

[DOC]s = [DOC]s,base+ kT ,1Tsoil. (2)

Soil temperature is computed based on air temperature
using a simplified version of the Rankinen soil temper-
ature model (Rankinen et al., 2004). We assume that the
DOC concentration reaches equilibrium instantly.

2. More complex relationship between soil water DOC
concentration and soil temperature than structure 1, a
second-degree polynomial:

[DOC]s = [DOC]s,base+ (kT ,1+ kT ,2Tsoil)Tsoil. (3)

3. The observed DOC time series shows a long-term trend
that is not explained by soil temperature, but which
other studies have suggested is due to recovery from soil
water acidification (Futter and de Wit, 2008; Monteith et
al., 2007). To test the importance of this process, we use
yearly means of measured stream SO2−

4 concentration
as a proxy for soil water acidification and add a linear
dependence of DOC concentration on SO2−

4 concentra-
tion:

[DOC]s = [DOC]s,base+ (kT ,1+ kT ,2Tsoil)Tsoil

− kSO4 [SO2−
4 ]. (4)

Note that in an operational model, this would need re-
placing with SO2−

4 concentration in deposition (which
should be well correlated with stream water SO2−

4 con-
centration) to allow for future predictions.

4. There are visible short-term decreases in the stream
DOC concentration during snow melt, likely due to
source exhaustion and dilution. In this structure, we at-
tempt to simulate this by introducing a separate param-
eter for the snow melt DOC concentration:

(quick DOC flux)=Qquick,melt[DOC]melt

+Qquick,rain[DOC]s. (5)

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021

http://met.no


1892 M. D. Norling et al.: The Mobius framework v1.0

Table 1. DOC-related parameters used in the various simple carbon model structures explored.

Parameter Symbol Model structure

Baseline soil water DOC concentration [DOC]s,base 1–6
Soil temperature DOC concentration linear response coefficient kT ,1 1–6
Soil temperature DOC concentration second-order response coefficient kT ,2 2–6
Soil carbon solubility response to SO2−

4 deposition kSO4 3–6
Snow melt DOC concentration [DOC]melt 4
Equilibration speed factor ceq 6

5. Starting from structure 3, replace the soil temperature
model by the Lindström model (Lindström et al., 2002)
to see if the effect of the choice of soil temperature
model is important.

6. Instead of assuming instant equilibration of soil water
DOC concentration, add equilibration as a delayed pro-
cess. We add a state variable [DOC]s,eq, which obeys
the same equation as [DOC]s in the formulation from
structure 3. We then let DOC mass in the soil move to-
ward the point where equilibrium is satisfied:

[DOC]s,eq = [DOC]s,base+ (kT ,1+ kT ,2Tsoil)Tsoil

− kSO4 [SO2−
4 ] (6)

dDOCs

dt
= ceq

(
[DOC]s,eq− [DOC]s

)
− [DOC]sQs (7)

[DOC]s = DOCs/Vs, (8)

where Vs is the modelled soil water volume and ceq is
the equilibration speed factor.

Going from one structure to the next typically involves
just a few lines of code (see code and data for this
experiment in the Mobius repository; application files
for compiling models, input data files, and parameter
files are in the “Applications\SimplyC_paper” subfolder,
while module files containing the definitions of each
structure (inputs, parameters, and equations) are in the
“Modules\Alternate_versions_of_simplyC” subfolder).

3.2.4 Model comparison and selection of the most
appropriate structure

The model structures were calibrated using data from the
period 1986–2003. The calibrations were then evaluated on
data from the period 2004–2016. All auto-calibrations were
performed using the implementation of the Nelder–Mead al-
gorithm in the Python lmfit package, described in Sect. 3.1.2.
We auto-calibrated the hydrology module separately first and
fixed the hydrology parameters for all subsequent calibra-
tions of the DOC-related parameters. It is possible to cali-
brate for hydrology and DOC at the same time, but in this
particular experiment we decided to simplify the parame-
ter space to only those parameters relating to DOC, to al-
low more targeted model selection. The two soil temperature

Table 2. Goodness of fit (Nash–Sutcliffe coefficient) obtained for
stream DOC concentration using the six model structures and num-
ber of parameters relating to DOC processes and soil T (parameters
based on well-constrained physically measured quantities are ex-
cluded). Nash–Sutcliffe values of 1 indicate a perfect fit; values of
0 suggest the model is no better a predictor than the mean of the
observations.

Model structure Goodness of fit Number of
parameters

Calibration Validation DOC Soil
(1986–2003) (2004–2016) T

1 0.51 0.50 2 2
2 0.65 0.61 3 2
3 0.67 0.62 4 2
4 0.67 0.62 5 2
5 0.65 0.63 4 3
6 0.64 0.62 5 3

modules used were also calibrated just once each against the
more limited soil temperature data available.

For each model structure in order:

1. We manually calibrated the DOC-related parameters. If
applicable, manual calibration used the parameter val-
ues from the auto-calibration of the previous structure
as a starting point. The manual calibration targeted the
Nash–Sutcliffe coefficient as the goodness-of-fit statis-
tic.

2. Auto-calibration was run using the manual calibration
as a starting point. The auto-calibration algorithm uses
a least squares fitness measure. In terms of finding opti-
mal parameters, this is equivalent to optimising for the
Nash–Sutcliffe coefficient.

Auto-calibration of models written in the Mobius frame-
work is fast due to the fast run speeds of the models. The
longest time needed to auto-calibrate any of these structures
was 189 s (time depended on the number of parameters cal-
ibrated; see more on benchmarking in Sect. 3.3). This aids
with quick evaluation of new model structures.

Goodness-of-fit statistics from the automatic calibrations
of each of the six model structures are given in Table 2, to-

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021



M. D. Norling et al.: The Mobius framework v1.0 1893

gether with the number of calibrated DOC-related parame-
ters. A plot of the observed vs. modelled stream DOC con-
centration using the auto-calibrated parameter sets for struc-
tures 1, 3, and 5 is shown in Fig. 2.

Visually, the results are good overall, but all structures
fail to capture high DOC concentrations during some sum-
mers. The improvement of fit from structure 1 to 2 is obvious
(Table 2), as structure 2 allows for a more flexible relation-
ship between soil temperature and soil water DOC concen-
tration, and this relationship is a strong determining factor for
stream DOC concentration in this catchment. The improve-
ment from structure 2 to 3 is not as large, but structure 3 does
capture long-term trends a little better – in structure 2 there
is a long-term trend in the residuals that disappears in struc-
ture 3 (data not shown).

Adding snow melt dilution in structure 4 does not give a
significant improvement of fit. This is possibly because the
snow model used is simple and not constrained by observed
snow levels, so that the timing of the snow melt may be off.
Moreover, snow melt happens during a short time span and
so will not register as strongly when just calibrating for DOC
concentrations. If one also calibrated for total DOC fluxes, it
would be more prominent due to the high water flow during
snow melt, which would be something to explore further for
an operational model. Changing the soil temperature model
in structure 5 obtains a better fit for soil temperature, but the
stream DOC fit was relatively unchanged, probably because
differences in modelled soil temperature could be compen-
sated for by variations in the parameters that determine soil
DOC response to soil temperature. Structure 6 captures melt
dilution better, but it creates too much noise in the signal the
rest of the year. Calibrating for goodness of fit tends to ad-
just the ceq parameter to be very high so that equilibration is
almost instant (i.e. the model is close to equivalent to earlier
formulations).

Out of the six structures, model 5 performed marginally
best during validation but had two additional parameters
compared to structure 3. Overall, structure 3 seems to be the
most appropriate given the observed data, offering the best
compromise between model performance (particularly dur-
ing validation) and complexity. More work would be needed
to arrive at an operational model and a more formal model
selection process using, e.g. a Bayesian approach would also
be possible (e.g. Marshall et al., 2005). However, hopefully
this exercise serves to illustrate the relative ease with which
model development can be carried out and alternative struc-
tures quickly explored.

To explore how well-constrained parameters in structure 3
are by the observed data, and also to explore any param-
eter covariance, we then used the emcee algorithm (see
Sect. 3.1.2) to generate a sample of the posterior distribu-
tion of structure 3 and associated marginal posteriors of the
parameters. The model run interval was the same as the ear-
lier calibration interval. The sampler was run with 100 chains
for 1000 steps, each with a burn-in of 100 steps, and showed

Table 3. Ratio of times taken for 1000 runs of the hard-coded model
versions vs. 1000 runs of the Mobius version. Testing was done on
several common desktop machines and laptops, both under Linux
and Windows.

Hard-coded model language Run speed ratio

C++ 0.5–0.7
Python approximately 200

good convergence. A heteroscedastic Gaussian error struc-
ture was used, where the standard deviation of the likelihood
at each point in time is assumed to be equal to a Bayesian
error parameter (errDOC) multiplied by the simulated value
at that point. A corner plot of the results (Fig. 3) shows that
the parameters are well constrained by the observed data –
which is desirable in a model – and gives an idea of the prob-
able range of each parameter, represented as the 95 % “cred-
ible interval” on each marginal histogram. Clear covariance
between [DOC]s,base and kSO4 is also apparent.

3.3 Benchmarking of model run speeds

For benchmarking, we created a hard-coded test model in
C++ (i.e. the model code was written without using a frame-
work) and a mathematically equivalent model in Mobius.
The model was a simple hydrological model (SimplyQ;
Jackson-Blake et al., 2017) and we verified that the two im-
plementations produced the same results up to numerical
error. The hard-coded model had a straightforward imple-
mentation and was not excessively optimised using advanced
techniques such as single instruction multiple data (SIMD) or
optimisation of cache locality, but we assume that this is not
commonly done by most researchers. A hard-coded version
of the model was also produced in Python. Results of the
benchmarking show that Mobius models have a slight per-
formance loss compared to hard-coded C++ models but run
several orders of magnitude faster than hard-coded Python
models (Table 3). The code used in these experiments can
be found in the “Evaluation” subfolder of the Mobius repos-
itory.

Note that we only report the ratio of how fast the other im-
plementations run compared to the Mobius implementation,
since that is what shows the comparative advantage or disad-
vantage of using Mobius when it comes to model run speed.
This ratio is relatively stable across the machines we tried
(for instance an Intel Core i5-6600K CPU 3.50 GHz and an
Intel Core i5-8350U CPU 1.70 GHz).

4 Discussion and outlook

Mobius aims to be a framework for rapid development of
hydrological and biogeochemical models and other models
based on ODE and discrete time step equations. Model de-

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021



1894 M. D. Norling et al.: The Mobius framework v1.0

Figure 2. Time series of observed and modelled stream dissolved organic carbon (DOC) concentration (model structures 1, 3, and 5; auto-
calibrated parameters).

velopment should be fast and flexible, and models should run
quickly. The aim is for Mobius to be a virtual environmen-
tal laboratory for researchers to test their hypotheses about
natural processes using quantifiable data.

Each component of the Mobius framework targets a dif-
ferent user group:

– Practitioners with little or no programming experience
can use MobiView to manually calibrate and apply ex-
isting models that have been built by other users.

– Researchers with basic programming skills can use the
Python wrapper to perform sophisticated model auto-
calibration and uncertainty assessments, make predic-
tions under uncertainty, and consider whether model
process representations are adequate.

– Researchers and developers with more advanced pro-
gramming skills can use all components of the frame-
work to iteratively calibrate, evaluate, and refine process
representations and/or make ensemble simulations from
a range of model structures.

We find that Mobius satisfies its aims for a large range of
models. More complicated models than the one described in
Sect. 3.2 can be found in the Mobius repository (see Sect. 5).
The automatic model structure generation and the optimisa-
tion and visualisation tools allow the user to quickly formu-
late models and test them without having to do technical pro-
gramming.

With models that have more complicated process descrip-
tions (many equations) or rely on many different compart-
ments or index sets, it can take some more training to use
Mobius correctly. This is because it takes training to create
dependencies between index sets, parameters, and equations
that will create the intended structure. It may also take some

experimenting with the model design to understand what in-
dex sets a model should use. To help with this, we have in-
cluded many helpful debugging facilities such as detailed er-
ror messages, printouts of the generated structure, and other
statistics. There is also a detailed user manual and many ex-
isting examples.

Since the code that computes the state variables should be
factored out as separate code pieces that can be evaluated
in order, we find that Mobius is not that suitable for models
where simultaneous computation of several state variables is
needed (unless they can be described as a system of ODEs,
which is well supported). This can happen when using certain
linear algebra operations or when doing computations where
several iterations are needed per time step in order to, e.g.
compute an equilibrium of many chemical compounds. It is
possible to build such models in Mobius (the value of other
state variables can be set from a single code piece), but the
framework is not as helpful with this type of model.

There is a performance drawback of evaluating equation
code through lambdas that are stored in an array, which is
how Mobius stores the equation code, as that requires calling
this code through function pointers. This is difficult for the
compiler to optimise and can cause cache misses. A way to
improve this would be to instead have a code generator that
generates the model run structure as program code based on
the model specification code, which is then compiled sep-
arately. The drawback of doing it that way is that it forces
the framework creators to maintain their own parser for the
model specification code, and it would make the model struc-
ture non-malleable after compilation.

There are a few other technical limitations in the current
implementation:

– Strong two-way links (such as two-way fluxes) between
different instances of the same equation batch are not

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021



M. D. Norling et al.: The Mobius framework v1.0 1895

Figure 3. Corner plot of the marginal posterior distributions of DOC-related parameters in model structure 3. Sampled using the emcee
algorithm.

well supported, though workarounds are possible in
simple cases. For instance, it would currently be dif-
ficult to build grid-based models with an ODE-based
two-way diffusion of quantities between neighbouring
cells (assuming the number of cells is not fixed by the
model). This is related to the next limitation.

– ODE equations in the same batch can be solved as one
coupled ODE system for each index in the index set
of the batch. But it is currently not possible to solve
a coupled system consisting of multiple indexes at the
same time. Instead, they must be solved as separate sys-
tems. This limitation only applies when using the au-
tomatic distribution of equations over indexes. If one
instead manually codes every instance of the equations,

this limitation is circumvented, but the flexibility of us-
ing the automatic indexing system is removed.

– Coupling between different Mobius modules works
well, and the model interaction API can be used to cou-
ple Mobius models to models not built in Mobius. How-
ever, currently it is not possible to have per-time step in-
teraction between Mobius models and external models.
Either the entire Mobius model must be run first to then
use its outputs as inputs to the other model, or the other
way around.

We hope to remove some of these limitations in the future. In-
deed, Mobius is under active development, and priorities for
the near future include expanding the range of available pre-
built models (porting existing models from elsewhere into

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021



1896 M. D. Norling et al.: The Mobius framework v1.0

Mobius and developing new ones), developing interfaces for
the R and Julia programming languages, and development
of a statistical model comparison framework to aid in model
selection.

We are keen to build an open-source community of users
interested in modular open-source model development, and
to that end we also plan on creating a user forum, carrying out
training workshops, and continuing the development of on-
line documentation, tutorials, and tools for easy interaction
with models.

Overall, the Mobius framework combines cutting-edge
computational speed with sophisticated model inspection
and evaluation tools. This permits comprehensive model as-
sessment – crucially including consideration of structural un-
certainty – without compromising performance. The frame-
work is freely available under a GNU Lesser General Public
License (v3.0) and we hope that by making it easier to ex-
plore a broader range of model structures and parameterisa-
tions, users will be encouraged to build better and more ap-
propriate models. We believe this will in turn improve both
process understanding and practical decision making.

Code and data availability. The most up-to-date version of Mo-
bius can be found at https://github.com/NIVANorge/Mobius (last
access: 8 April 2021). An archived version (27 January 2020) cor-
responding to the work described in this paper is available on Zen-
odo https://doi.org/10.5281/zenodo.3628211 (Norling et al., 2020).
Mobius is distributed with the GNU Lesser General Public License
(v3.0). Mobius models can be compiled to work on most platforms,
and MobiView works on Windows and Linux. Pre-compiled bina-
ries of MobiView and selected Mobius models are available for
64-bit Windows (download instructions are given on the Mobius
GitHub front page).

User manuals and documentation for Mobius and MobiView are
available in the “Documentation” subfolder of the Mobius reposi-
tory. See also the README file in the repository.

Author contributions. MDN developed the Mobius framework and
MobiView, co-developed the Python integration of Mobius, im-
plemented the DOC model examples, and performed some of the
experiments with them. LAJB developed the Simply models, co-
developed the DOC model example, and performed some of the
experiments with them. JES co-developed the Python integration of
Mobius with the lmfit and emcee packages. JLGC was involved in
the design process of Mobius. MDN prepared the manuscript with
contributions from all co-authors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Mobius takes many of its design ideas from
and supersedes the INCA Core Framework developed by Dan
Butterfield. The development of Mobius was partially funded by

Nordforsk “Nordic eScience Globalisation Initiative (NeGI)” via
the project “An open access, generic ePlatform for environmental
model-building at the river-basin scale” (Machu-Picchu). We ac-
knowledge the crucial role of Raoul M. Couture and Martyn N. Fut-
ter in getting that project started. Mobius development was also par-
tially funded by the Norwegian Institute for Water Research (NIVA)
and we acknowledge the very important support that Heleen de Wit
and Thorjørn Larssen provided during development.

Review statement. This paper was edited by Adrian Sandu and re-
viewed by two anonymous referees.

References

Ahnert, K. and Mulansky, M.: Odeint – Solving Ordinary Differen-
tial Equations in C++, AIP Conference Proceedings, 1389, 1586,
https://doi.org/10.1063/1.3637934, 2011.

Beven, K.: Rainfall-Runoff Modelling, The Primer, Second Edition,
Wiley-Blackwell, New Jersey, 2012.

Blair, G. S., Beven, K., Lamb, R., Bassett, R., Cauwenberghs, K.,
Hankin, B., Dean, G., Hunter, N., Edwards, L., Nundloll, V.,
Samreen, F., Simm, W., and Towe, R.: Models of everywhere
revisited: A technological perspective, Environ. Model. Softw.,
122, 104521, https://doi.org/10.1016/j.envsoft.2019.104521,
2019.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J.
A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for
Understanding Structural Errors (FUSE): A modular framework
to diagnose differences between hydrological models, Water Re-
sour. Res., 44, W00B02, https://doi.org/10.1029/2007wr006735,
2008.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A.
W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen,
R. M.: A unified approach for process-based hydrologic model-
ing: 1. Modeling concept, Water Resour. Res., 51, 2498–2514,
https://doi.org/10.1002/2015WR017198, 2015.

de Wit, H. A., Granhus, A., Lindholm, M., Kainz, M. J., Lin,
Y.,Veiteberg Braaten, H. F., and Blaszczak, J.: Forest har-
vest effects on mercury in streams and biota in Norwe-
gian boreal catchments, Forest Ecol. Manag., 324, 52–63,
https://doi.org/10.1016/j.foreco.2014.03.044, 2014.

de Wit, H. A., Ledesma, J. L. J., and Futter, M. N.: Aquatic
DOC export from subarctic Atlantic blanket bog in Norway is
controlled by seasalt deposition, temperature and precipitation,
Biogeochemistry, 127, 305–321, https://doi.org/10.1007/s10533-
016-0182-z, 2016.

de Wit, H. A., Couture, R.-M., Jackson-Blake, L., Futter, M. N.,
Valinia, S., Austnes, K., Guerrero, J.-L., and Lin, Y.: Pipes
or chimneys? For carbon cycling in small boreal lakes, pre-
cipitation matters most, Limnol. Oceanogr. Lett., 3, 275–284,
https://doi.org/10.1002/lol2.10077, 2018.

Eddelbuettel, D. and François, R.: Rcpp: Seamless R
and C++ Integration, J. Statist. Softw., 40, 1–18,
https://doi.org/10.18637/jss.v040.i08, 2011.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlen-
brook, S., and Savenije, H. H. G.: A framework to assess the re-

Geosci. Model Dev., 14, 1885–1897, 2021 https://doi.org/10.5194/gmd-14-1885-2021

https://github.com/NIVANorge/Mobius
https://doi.org/10.5281/zenodo.3628211
https://doi.org/10.1063/1.3637934
https://doi.org/10.1016/j.envsoft.2019.104521
https://doi.org/10.1029/2007wr006735
https://doi.org/10.1002/2015WR017198
https://doi.org/10.1016/j.foreco.2014.03.044
https://doi.org/10.1007/s10533-016-0182-z
https://doi.org/10.1007/s10533-016-0182-z
https://doi.org/10.1002/lol2.10077
https://doi.org/10.18637/jss.v040.i08


M. D. Norling et al.: The Mobius framework v1.0 1897

alism of model structures using hydrological signatures, Hydrol.
Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-
1893-2013, 2013.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
W11510, https://doi.org/10.1029/2010WR010174, 2011.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.:
emcee: The MCMC Hammer, Publications of the Astronomical
Society of the Pacific, 125, 925, https://doi.org/10.1086/670067,
2013.

Futter, M. N. and de Wit, H. A.: Testing seasonal and long-
term controls of streamwater DOC using empirical and
process-based models, Sci. Total Environ., 407, 698–707,
https://doi.org/10.1016/j.scitotenv.2008.10.002, 2008.

Futter, M. N., Butterfield, D., Cosby, B. J., Dillon, P. J., Wade,
A. J., and Whitehead, P. G.: Modeling the mechanisms that
control in-stream dissolved organic carbon dynamics in up-
land and forested catchments, Water Resour. Res., 43, W02424,
https://doi.org/10.1029/2006WR004960, 2007.

Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G.,
Oni, S. K., and Wade, A. J.: PERSiST: a flexible rainfall-runoff
modelling toolkit for use with the INCA family of models, Hy-
drol. Earth Syst. Sci., 18, 855–873, https://doi.org/10.5194/hess-
18-855-2014, 2014.

Goodman, J. and Weare, J.: Ensemble samplers with affine invari-
ance, Communications in Applied Mathematics and Computer
Science, 5, 65–80, https://doi.org/10.2140/camcos.2010.5.65,
2010.

Jackson-Blake, L. A., Wade, A. J., Futter, M. N., Butterfield, D.,
Couture, R. M., Cox, B., Crossman, J., Ekholm, P., Halliday, S.
J., Jin, L., Lawrence, D. S. L., Lepistö, A., Lin, Y., Rankinen, K.,
and Whitehead, P. G.: The INtegrated CAtchment model of phos-
phorus dynamics (INCA-P): Description and demonstration of
new model structure and equations, Environ. Model. Softw., 83,
356–386, https://doi.org/10.1016/j.envsoft.2016.05.022, 2016.

Jackson-Blake, L. A., Sample, J. E., Wade, A. J., Helliwell, R. C.,
and Skeffington, R. A.: Are our dynamic water quality models
too complex? A comparison of a new parsimonious phospho-
rus model, SimplyP, and INCA-P, Water Resour. Res., 53, 5390–
5399, https://doi.org/10.1002/2016WR020132, 2017.

Kavetski, D. and Fenicia, F.: Elements of a flexible ap-
proach for conceptual hydrological modeling: 2. Application
and experimental insights, Water Resour. Res., 47, W11511,
https://doi.org/10.1029/2011WR010748, 2011.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., Willing, C., and Jupyter devel-
opment team: Jupyter Notebooks – a publishing format for re-
producible computational workflows, in: Positioning and Power
in Academic Publishing: Players, Agents and Agendas, edited
by: Loizides, F. and Scmidt, B., IOS Press, Amsterdam, 87–90,
https://doi.org/10.3233/978-1-61499-649-1-87, 2016.

Lindström, G., Bishop, K., and Löfvenius, M. O.: Soil frost
and runoff at Svartberget, northern Sweden – measure-

ments and model analysis, Hydrol. Process., 16, 3379–3392,
https://doi.org/10.1002/hyp.1106, 2002.

Marshall, L., Nott, D., and Sharma, A.: Hydrological model selec-
tion: A Bayesian alternative, Water Resour. Res., 41, W10422,
https://doi.org/10.1029/2004WR003719, 2005.

Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A.,
Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jef-
fries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J., and Vesely,
J.: Dissolved organic carbon trends resulting from changes
in atmospheric deposition chemistry, Nature, 450, 537–540,
https://doi.org/10.1038/nature06316, 2007.

Mooij, W. M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipet-
sky, P. V., Chitamwebwa, D. B. R., Degermendzhy, A. G., DeAn-
gelis, D. L., De Senerpont Domis, L. N., Downing, A. S., Elliott,
J. A., Fragoso, C. R., Gaedke, U., Genova, S. N., Gulati, R. D.,
Håkanson, L., Hamilton, D. P., Hipsey, M. R., ’t Hoen, J., Hüls-
mann, S., Los, F. H., Makler-Pick, V., Petzoldt, T., Prokopkin, I.
G., Rinke, K., Schep, S. A., Tominaga, K., van Dam, A. A., van
Nes, E. H., Wells, S. A., and Janse, J. H.: Challenges and op-
portunities for integrating lake ecosystem modelling approaches,
Aquat. Ecol., 44, 633–667, https://doi.org/10.1007/s10452-010-
9339-3, 2010.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Newville, M., Stensitzki, T., Allen, D. B., and Ingargi-
ola, A.: LMFIT: Non-Linear Least-Square Minimization
and Curve-Fitting for Python (Version 0.8.0), Zenodo,
https://doi.org/10.5281/zenodo.11813, 2014.

Norling, M., Jackson-Blake, L., and Sample, J.: NI-
VANorge/Mobius: Mobius paper release (Version v1.0),
Zenodo, https://doi.org/10.5281/zenodo.3628211, 2020.

Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101–
2111, https://doi.org/10.1002/hyp.1425, 2003.

Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J.,
Whitehead, P. G., Butterfield, D., Rankinen, K., and Lepisto, A.:
A nitrogen model for European catchments: INCA, new model
structure and equations, Hydrol. Earth Syst. Sci., 6, 559–582,
https://doi.org/10.5194/hess-6-559-2002, 2002.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catch-
ment Classification and Hydrologic Similarity, Geogr. Compass,
1, 901–931, https://doi.org/10.1111/j.1749-8198.2007.00039.x,
2007.

Wambecq, A.: Rational Runge–Kutta methods for solving sys-
tems of ordinary differential equations, Computing, 20, 333–342,
https://doi.org/10.1007/BF02252381, 1978.

Weiler, M. and Beven, K.: Do we need a Community Hy-
drological Model?, Water Resour. Res., 51, 7777–7784,
https://doi.org/10.1002/2014WR016731, 2015.

Whitehead, P. G., Wilson, E. J., and Butterfield, D.: A semi-
distributed Integrated Nitrogen model for multiple source as-
sessment in Catchments (INCA): Part I – Model structure
and process equations, Sci. Total Environ., 210–211, 547–558,
https://doi.org/10.1016/S0048-9697(98)00037-0, 1998.

https://doi.org/10.5194/gmd-14-1885-2021 Geosci. Model Dev., 14, 1885–1897, 2021

https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.1029/2010WR010174
https://doi.org/10.1086/670067
https://doi.org/10.1016/j.scitotenv.2008.10.002
https://doi.org/10.1029/2006WR004960
https://doi.org/10.5194/hess-18-855-2014
https://doi.org/10.5194/hess-18-855-2014
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1016/j.envsoft.2016.05.022
https://doi.org/10.1002/2016WR020132
https://doi.org/10.1029/2011WR010748
https://doi.org/10.1029/2005WR004362
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1002/hyp.1106
https://doi.org/10.1029/2004WR003719
https://doi.org/10.1038/nature06316
https://doi.org/10.1007/s10452-010-9339-3
https://doi.org/10.1007/s10452-010-9339-3
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.3628211
https://doi.org/10.1002/hyp.1425
https://doi.org/10.5194/hess-6-559-2002
https://doi.org/10.1111/j.1749-8198.2007.00039.x
https://doi.org/10.1007/BF02252381
https://doi.org/10.1002/2014WR016731
https://doi.org/10.1016/S0048-9697(98)00037-0

	Abstract
	Introduction
	Overview of Mobius
	The model builder API
	The model interaction API

	Demonstration of Mobius
	Tools for convenient interaction with Mobius models
	MobiView GUI
	Python wrapper and integration with model auto-calibration and uncertainty analysis packages

	Rapid model development – a case study
	Case study site and data for model selection
	General model setup
	Carbon model structures
	Model comparison and selection of the most appropriate structure

	Benchmarking of model run speeds

	Discussion and outlook
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

