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EDITOR'S NOTE:
This article is part of the special series “Applications of Bayesian Networks for Environmental Risk Assessment and

Management” and was generated from a session on the use of Bayesian networks (BNs) in environmental modeling
and assessment in 1 of 3 recent conferences: SETAC North America 2018 (Sacramento, CA, USA), SETAC Europe 2019
(Helsinki, Finland), and European Geosciences Union 2019 (Vienna, Austria). The 3 sessions aimed at showing the state‐of‐
the art and new directions in the use of BN models in environmental assessment, focusing on ecotoxicology and water
quality modeling. This series aims at reflecting the broad applicability of BN methodology in environmental assessment
across a range of ecosystem types and scales, and discusses the relevance for environmental management.

ABSTRACT
Environmental and ecological risk assessments are defined as the process for evaluating the likelihood that the environment

may be impacted as a result of exposure to stressors. Although this definition implies the calculation of probabilities, risk
assessments traditionally rely on nonprobabilistic methods such as calculation of a risk quotient. Bayesian network (BN) models
are a tool for probabilistic and causal modeling, increasingly used in many fields of environmental science. Bayesian networks
are defined as directed acyclic graphs where the causal relationships and the associated uncertainty are quantified in condi-
tional probability tables. Bayesian networks inherently incorporate uncertainty and can integrate a variety of information types,
including expert elicitation. During the last 2 decades, there has been a steady increase in reports on BN applications in
environmental risk assessment and management. At recent annual meetings of the Society of Environmental Toxicology and
Chemistry (SETAC) North America and SETAC Europe, a number of applications of BN models were presented along with new
theoretical developments. Likewise, recent meetings of the European Geosciences Union (EGU) have dedicated sessions to
Bayesian modeling in relation to water quality. This special series contains 10 articles based on presentations in these sessions,
reflecting a range of BN applications to systems, ranging from cells and populations to watersheds and national scale. The
articles report on recent progress in many topics, including climate and management scenarios, ecological and socioeconomic
endpoints, machine learning, diagnostic inference, and model evaluation. They demonstrate that BNs can be adapted to
established conceptual frameworks used to support environmental risk assessments, such as adverse outcome pathways and
the relative risk model. The contributions from EGU demonstrate recent advancements in areas such as spatial (geographic
information system [GIS]–based) and temporal (dynamic) BNmodeling. In conclusion, this special series supports the prediction
that increased use of Bayesian network models will improve environmental risk assessments. Integr Environ Assess Manag
2021;17:53–61. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals
LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
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INTRODUCTION
“Increased use of Bayesian network models will improve

ecological risk assessments” was the title of an editorial
paper by Hart and Pollino (2008), which documented an
increase in Bayesian network (BN) model applications with
relevance for ecological risk assessment. Readers not yet
familiar with BN models may not find this statement
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informative, but hopefully intriguing enough to explore this
special series on applications of BNs in environmental risk
assessment and management. In brief, BNs are graphical,
probabilistic, and causal models (Figure 1). They can com-
bine qualitative knowledge and quantitative data to model a
system using probabilities, which is consistent with the
concept of risk being probabilistic (Pollino et al. 2007). The
process of risk assessment is formally defined in terms of
likelihood or probability. For example, the United States
Environmental Protection Agency defines ecological risk
assessment as “the process for evaluating how likely it is
that the environment may be impacted as a result of
exposure to one or more environmental stressors…” (USEPA
2020). The European Food Safety Authority defines risk
characterization as “the final stage of risk assessment, in
which the likelihood that a particular substance will cause
harm is calculated in the light of the nature of the hazard and
the extent to which people, animals, plants and/or the
environment are exposed to it” (EFSA 2020). (The term
“ecological risk assessment” is commonly used in North
America whereas the term “environmental risk assessment”
in more commonly used in Europe. In the present paper, we
use the term “environmental risk assessment” [ERA] to
include both ecological and human health endpoints

[EEA 1998]). Although probabilistic methods have been
recommended for risk assessment (Jager et al. 2001; USEPA
2014; Van den Brink et al. 2016), they are not yet thoroughly
implemented in regulatory risk frameworks. In practice, it
is still more common to use so‐called “deterministic” ap-
proaches, such as the single‐value risk quotient calculated as
the ratio of predicted exposure and no‐effect concentrations
of a stressor (Fairbrother et al. 2016).

This special series of 10 articles can be viewed as a follow‐
up and evaluation of the statement by Hart and Pollino
(2008). The series starts with a literature review (Kaikkonen
et al. this issue), which documents the increased use of BNs
in the context of ERA over the last 15 y. This is followed by
7 articles with case studies from different environmental
domains, which exemplifies recent advancements in BN
modeling and improvements for ERA. Three of these case
studies apply the BN relative risk model; the history and
development of this modeling framework for ERA is
documented in a separate paper (Landis this issue). Finally,
the series provides discussion and recommendations
on how to handle uncertainty in BNs for risk assessment
(Sahlin et al. this issue). This series of papers demonstrates
that increased use of BN models has indeed improved and
will continue to improve ERAs.
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Figure 1. Main components of a Bayesian network (from Mitchell et al. this issue). The full model is described in Figure 2. The nodes represent probability
distributions over mutually exclusive states. The relationship between parent and child nodes is quantified by a conditional probability table, representing the
probability of each child node state given each combination of parent node states.
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BAYESIAN NETWORKS SESSION IN SETAC
ANNUAL MEETINGS
To facilitate the discussion of the usage of BNs for risk

assessment, conference sessions focusing on BN modeling
were initiated by the authors in the Society of Environmental
Toxicology and Chemistry (SETAC) annual meetings since
2018, first in North America (chaired by WG Landis and JF
Carriger) and subsequently in Europe (by SJ Moe, WG
Landis, and DN Barton). The sessions attracted international
scientists and provided diverse perspectives on the appli-
cation of BNs. Presenters and attendees were from multiple
career stages and experience levels, and some of the most
enthusiastic participants in these sessions were those who
were new to BNs. Discussions in these sessions were often
focused on lessons learned and identifying where BNs will
benefit the development and application of risk assessment.
The authors of the manuscripts in this special series provide
a cross‐section of the presenters that were involved with
these sessions. Concurrently, the European Geosciences
Union (EGU) organized sessions addressing the application
of Bayesian approaches more generally in water quality
modeling (chaired by M Glendell). We invited selected pa-
pers from the EGU session in 2019 because practitioners of
BN modeling in ecotoxicology can learn from the recent
developments in this closely related field.
The Integrated Environmental Assessment and Manage-

ment editorial team has already recognized this modeling
approach by publishing the previous special series
“Bayesian Networks in Environmental and Resource
Management” (Barton et al. 2012), which addressed
environmental management applications more broadly. The
present series focuses more specifically on the applicability
of BNs as a probabilistic and integrative modeling method
for ERA and as an alternative to the more traditional de-
terministic methods. As shown in the articles of this special
series, the application of BNs to ERAs continues to grow
along with the complexity of problems that must be tackled
by ERA, from a changing climate to multiple stressors and
scales (Landis et al. 2013). The uncertainties and information
requirements for ERA are only increasing, and the present
special series comes at a critical time for the application and
development of BNs in ERAs.
Although BNs are becoming more of a known quantity,

their mainstream acceptance by the ERA community is still
largely scarce. In our experience, this is not due to an in-
herent problem with the BN methodology or its usefulness,
but an unfamiliarity and mystification of what it is. Explaining
the causal structure of a BN applied to an environmental
problem is relatively easy and more intuitive than most other
modeling techniques we have applied. A bigger challenge
is to explain the modeling of probability distributions and
the role of the conditional probability tables (CPTs), which
are often displayed only as arrows in diagrams. One area of
active research in BNs is their application to stakeholder
workshops and representing the concerns and under-
standing of stakeholders and experts for communicating
technical information (Tiller et al. 2013; Carriger et al. 2018).

In keeping with the spirit of the sessions, our intention is
to provide information on the state of the art of BN
practice in ERA, but also to welcome newcomers to these
modeling tools and provide an equitable background for
understanding the subsequent articles. A more detailed
description can be found in, for example, Kaikkonen et al.
(this issue).

A BRIEF DESCRIPTION OF BAYESIAN NETWORKS
Invented in 1985 by Judea Pearl and colleagues

(Pearl 1988), BNs represent a joint probability distribution
among multiple variables in a graphical format. The graph-
ical component of BNs consists of nodes that represent
random variables and arcs (arrows) that connect the varia-
bles (Figure 1). The BN nodes and arrows form a directed
acyclic graph, meaning that the network can have closed
loops but no cycles (Figure 2). The nodes are usually defined
by discrete states such as categories or intervals, although
hybrid BNs can also contain continuous nodes (Moe
et al. 2020). The arrows pointing into a node in a BN rep-
resent a causal relationship that is quantified in a CPT, which
relates the probability for each state of the child node to
each of the states of the parents (e.g., Carriger et al. 2016).
The probability distribution of a child node is calculated
from the probability distributions of its parent nodes com-
bined with its CPT according to Bayes' rule, which describes
the probability of an event conditional on prior knowledge
of conditions that might be related to the event (Kjærulff
and Madsen 2008). Although BNs are used for causal
modeling, the CPTs can be based on noncausal associations
between variables (e.g., Carriger et al. this issue). The types
of variables that can be represented are flexible but should
include variables important to the questions addressed by
the model, including confounding variables that would
typically be controlled for in a randomized controlled trial,
and that increase accuracy in prediction (Varis and
Kuikka 1999).
Propagating uncertainties with a BN can be valuable for

risk assessments that rely on multiple pieces of interacting
evidence for characterizing risks from the fate and transport
of stressors to predictions of potential adverse impacts.
Sensitivity analysis is also robustly accommodated with BNs
through information theory measures (Korb and Nicholson
2011), which helps to identify the influence of each variable
on a target node in the BN. This can assist with identifying
dominant variables dictating the risks to the assessment
endpoints (Landis this issue; Piffady et al. this issue; Rachid
et al. this issue).
A unique property of BNs compared to, for example,

dynamic process‐based models, is that inference can be
made in an omnidirectional fashion. The model can be run
from cause to effect, that is, from the parent nodes in the
direction of the arrow, for example, to predict biological
effects of given chemical conditions (Figure 3A). However, a
BN can also be run in the opposite direction from effect to
cause, starting with one or more child nodes (Figure 3B).
The BN can then back‐calculate to the probability
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distributions of the cause (here, the stressor concentration)
associated with the observed effects (here, the adverse
outcome). Other examples of diagnostic inference can be
found in Carriger and Newman (2012), Mitchell et al. (this
issue), and Rachid et al. (this issue).
Using a BN makes the statistical and mechanistic as-

sumptions in predictions and causal assessments trans-
parent and tractable. The graphical engine of the BN makes
it a transparent tool about what is being modeled and how it
is being modeled. Several commercial and open‐source
software packages exist for using BNs, some of which are
listed by Kaikkonen et al. (this issue). Each of these has
unique features, but all can be useful for probabilistic causal
modeling in assessment and management decision‐making
models.

APPLICATIONS OF BAYESIAN NETWORKS TO
ENVIRONMENTAL RISK ASSESSMENT
Bayesian networks have found their way into multiple ev-

eryday applications, including identifying oil locations, ap-
proving medical devices, medical diagnosis, operational risk
management, legal profession, filtering emails for junk status,
skill ranking for modern video games, and cell phone rec-
ognition (Fenton and Neil 2013; Pearl and Mackenzie 2018).

Although relatively new, BNs have already been adopted in
many fields of applied environmental science, including for-
estry (Marcot et al. 2001), fisheries (Uusitalo et al. 2012), and
water resource management (Barton et al. 2008; Borsuk
et al. 2012). The application of BNs to landscape‐scale risk
assessment was reviewed by Moe (2010). Landuyt et al.
(2013) provided an overview for ecosystem service assess-
ments and found their application to this area was still limited
given the scope of ecosystem services, although their appli-
cation in this area has been growing steadily since then
(Stritih et al. 2020).

The qualitative structure of a BN can be used to capture
the causal relationships in a conceptual model for ERA,
whereas the quantitative part can capture uncertainties and
nonlinear interactions between the conceptual model's vari-
ables (Carriger and Parker 2021). The uncertainties regarding
these relationships are captured in the CPTs (Ayre and
Landis 2012; Moe et al. 2020). Thus, compared to the tradi-
tional use of conceptual models in ERA, BNs take the utility of
the conceptual model one step further by allowing for
quantitative information and incorporating the uncertainties
in knowledge of causes and effects. When a conceptual
model is placed into a BN format and the uncertainties
among the relationships are quantified with conditional

Integr Environ Assess Manag 2021:53–61 © 2020 The Authorswileyonlinelibrary.com/journal/ieam

Figure 2. Example of a conceptual model (A) converted into a Bayesian network (B), based on Mitchell et al. (this issue). The conceptual model describes the
toxicological effect of pesticides in combination with ecological factors on populations of Chinook bass in South River, Virginia, USA. In technical terms, the
conceptual model (A) is a directed acyclic graph consisting of nodes connected by arcs (arrows). The quantified model (B) can be viewed as a causal network of
probability distributions. AChE= acetylcholinesterase; 7‐DADMax= 7‐d average of the daily maximum temperatures.
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probabilities, the information can be used to predict risk as
the probability of a given adverse effect (Figure 2A). More-
over, the parameterized BN can calculate the likely con-
tribution of different causes to a given observed outcome
(Figure 2B). Given the flexibility of their format, BNs can be
adapted to many types of conceptual models used in ERA,
representing both associations and causal relationships. For
example, the traditional risk quotient (ratio of exposure vs
effect) can be quantified as a full probability distribution in-
stead of a single value (Carriger and Barron 2020). The causal
key event relationships of qualitative adverse outcome
pathway models can be quantified by CPTs (Moe et al. this
issue). The cause–effect model recommended for ERA for
gene drives (NASEM 2016) includes 5 interconnencted nodes
(source, stressor, habitat, effects, and impacts), which can be
expressed by BN modeling. The more complex multiple‐
stressor and multiendpoint systems described by the relative
risk model framework (Landis this issue) can also be im-
plemented in spatially structured BNs.
Causal and probabilistic modeling methods continue to

gain in importance for capturing and representing the
knowledge and data of important problems in risk assess-
ment. For issues involving scenarios like climate change
(Rachid et al. this issue), future chemical use (Piffady et al.
this issue), and emerging contaminants (e.g., Landis this
issue), the most critical questions are associated with

uncertainty. For example, the predictions of future fre-
quencies of severe storms, heat waves, and sea level rise
require questions about the uncertainty of the frequency of
occurrence and what proportion of the risk of an individual
extreme event can be directly attributed to anthropogenic
climate change (Pearl and Mackenzie 2018). Protecting
communities and ecosystems will rely on understanding
how uncertain our knowledge is on the rates of these future
changes and how management interventions can mitigate
future harms. The intuitive causal structure of BN models
combined with the user‐friendly graphical interface makes
BNs a useful tool for evaluating these problems in a prob-
abilistic manner, compared to other conventional proba-
bilistic approaches to ERA such as joint probability curves
(Verdonck et al. 2003).

CONTENT OF THIS SPECIAL SERIES
This series provides examples of probabilistic ERA with

BNs. The articles range from reviews to case study appli-
cations and explorations of theoretical aspects of BNs.
Seven of the articles provide case studies that reflect the
focus of the conference sessions on exploring where and
how BNs are being used. Each of the case studies provides a
unique network structure developed for multiple domains,
including laboratory and field data, freshwater and marine
risk problems, and endpoints that extend from single
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(A)

(B)

Figure 3. Examples of omnidirectional inference in a Bayesian network: Prognostic or predictive inference with observed stressor conditions and predicted
effects (A); diagnostic inference with stressor conditions predicted from observed effects (B). The example represents an adverse outcome pathway in a plant
exposed to the stressor 3,5‐dichlorophenol (DCP), described by Moe et al. (this issue).
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organisms (Moe et al. this issue) to populations (Mitchell
et al. this issue), and human health and socioeconomic as-
pects (Cains and Henshel this issue; Rachid et al. this issue;
Wade et al. this issue). Each of the case study applications
also speak to broader ERA issues outside of their study
domains. For example, the papers explore advanced
methods such as machine learning (Carriger et al. this issue),
temporally dynamic BNs (Rachid et al. this issue), influence
diagrams involving decision and valuation nodes (Piffady
et al. this issue), and adaptive management (Mitchell et al.
this issue; Wade et al. this issue).
The series starts with a systematic literature review of BNs

in ERA by Kaikkonen et al. (this issue). They examine the
application of BN approaches to ERA in 72 papers pub-
lished in the period 2004 to 2015, and analyze a range of
aspects such as methods, participants, technical properties,
environmental domain, stressors, and endpoints.
A retrospective of the implementation of BN method-

ology in the relative risk model framework (BN‐RRM) is
provided by Landis (this issue). Regional risk assessment
with this framework has been adopted globally for a multi-
tude of environmental problems. Landis provides a history
of what drove advances in ERAs with BNs, where these
advances have been applied and developed, and where
they may go in the future. Many of the applications at the
SETAC conference sessions were grounded in this frame-
work for applying BNs to ERA, including 3 of the papers in
this series (Cains and Henshel this issue; Mitchell et al. this
issue; Wade et al. this issue).
Mitchell et al. (this issue) develop and apply a BN‐RRM to

assess the risk of pesticides in combination with other en-
vironmental stressors for Chinook salmon (Oncorhynchus
tshawytscha) in the Yakima River Basin, Washington, USA.
The multiple stressor impacts on the metapopulation dy-
namics of Chinook salmon populations are considered
along with adaptive management recommendations based
on diagnostic inference with multiple sources of evidence
incorporated into the model. Wade et al. (this issue) apply
the BN‐RRM framework to a river system in South Africa.
This article takes an ecosystem‐based approach to ERA and
examines the influence of stressors on water quality and
quantity, habitat, and instream as well as riparian impacts on
human and ecological uses. Cains and Henshel (this issue)
present a holistic, systems engineering approach that in-
corporates consideration of both risk and resilience to ex-
amine the impacts of multiple stressors on socioecological
systems. They demonstrate their approach in a coastal risk
assessment for multiple threats, including contaminants, sea
level rise, and storm surge. This example focuses on the risk
to human communities and describes the parametrization
and quantification for integrated risk and resilience assess-
ments, paired with the BN‐RRM as a proof of concept.
The next 2 papers in this series (Carriger et al. this issue;

Moe et al. this issue) demonstrate that very different ap-
proaches can be used for parametrization of BNs (i.e.,
quantification of conditional probabilities). These 2 papers
also exemplify that BN methodology can be applied to

environmental problems at any spatial scale, ranging from
molecular processes in plant cells to the global distribution
of coral reefs. Moe et al. apply BNs for quantification of
adverse outcome pathways (AOPs), which are structured
representations of biological events leading to adverse ef-
fects. Adverse outcome pathways are considered highly
relevant for risk assessment, from molecular to ecological
outcomes, but in practice are limited by the lack of quanti-
tative relationships (Conolly et al. 2017). Moe et al. (this
issue) also exemplify how the uncertainties from laboratory
data can be included in development of a quantitative AOP
and provide an instructive use of Bayesian regression anal-
ysis for quantifying key event relationships and for devel-
oping CPTs more generally. Carriger et al. (this issue) use
machine learning with BNs and spatial data to explore the
relationships of indicators of coral reef biological status to
local and global sources of stressors and management from
marine protected areas. Although their model structures
represent empirical associations learned from the data
rather than causal relationships, a direct effects assessment
was used to examine the implications of causal assumptions
about some of the relationships in the models.

The 2 papers based on presentations for the EGU (Piffady
et al. this issue; Rachid et al. this issue) provide examples of
recent advancements in BN modeling with high relevance
also for ERA. Piffady et al. (this issue) demonstrate the use of
BNs in spatially explicit ERA for a country‐wide assessment
of risks from pesticides to surface waters based on basin‐
wide characteristics. The paper demonstrates the applic-
ability of BNs to integrate interdisciplinary understanding,
including soil science, hydrology, environmental chemistry,
agronomy, GIS, and Bayesian modeling. The systems‐based
modeling approach offers an alternative to complex mech-
anistic models in situations where data are scarce and fast
model run times are required for rapid decision support. The
authors find that quantitative model validation may be dif-
ficult and hindered by data availability and present an al-
ternative qualitative validation using stakeholder input. A
user‐friendly interface was built in R software (R Core Team
2018) to enable stakeholders to test management scenarios.
The interface of BNs to spatial problems is an active area of
research that was also explored in the previous special
series (Johnson et al. 2012).

Rachid et al. (this issue) examine coastal problems from
saltwater intrusion and provide a demonstration of a time‐
dynamic BN that explicitly considers the changes in risk and
uncertainties over time. Dynamic BNs is an area of recent
advancement in BN modeling (Marcot and Penman 2019).
The integration of time in BNs remains an active research
area, and to our knowledge Rachid et al. (this issue) present
the most developed application of dynamic BNs in water
quality modeling. One key feature of this case study is the
adaptation of BNs to data‐sparse but important problem
areas, and the dynamic BN is especially insightful for ex-
amining sustainability of future water availability from the
perspective of demand management and saltwater in-
trusion. This study finds that the importance of climate
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change for future water deficits is secondary to the impacts
of demographic changes.
Sahlin et al. (this issue) conclude the series by providing

an examination of uncertainty in BN modeling. They dis-
cuss how different sources of uncertainty—epistemic
(knowledge based) and aleatory (stochastic)—can be
handled within a BN framework, as well as the additional
considerations in addressing and communicating uncertain
knowledge.

FUTURE APPLICATIONS OF BAYESIAN NETWORKS
IN ENVIRONMENTAL RISK ASSESSMENT
The review paper by Kaikkonen et al. (this issue) provides

recommendations for increasing future applications and
value for decision making. Key knowledge gaps and direc-
tions for future research are identified, and several of these
are addressed by articles in this special series. These include
poor representation of cumulative risk and multiple stressors
in traditional risk assessment models (Landis this issue),
gaps in reporting of how stakeholders and experts were
involved in model formulation (Piffady et al. this issue), how
elicitation of subjective probabilities was undertaken (Piffady
et al. this issue; Rachid et al. this issue), and what methods
and criteria were used for discretization of continuous
variables (Carriger et al. this issue; Rachid et al. this issue).
The review found that networks using purely continuous
data are very rare and hybrid networks using both con-
tinuous and discrete nodes are scarce, likely due to limited
statistical distribution types in available BN modeling
software. Model validation is often missing and is the
subject of ongoing research (Carriger et al. this issue;
Moe et al. this issue; Rachid et al. this issue). Use of decision
and utility nodes in influence diagrams to inform adaptive
management is underused, and transdisciplinary integration
of ecological and socioeconomic aspects deserves further
research (Cains and Henshel this issue; Rachid et al. this
issue; Wade et al. this issue). Finally, combining BNs with
spatial data is a growing area of research and development
(Carriger et al. this issue; Piffady et al. this issue).
The applicability of BNs to environmental problems will

still be challenged by various conceptual, methodological,
and practical issues (Marcot 2017); such challenges also are
addressed by most authors in this special series (e.g., Landis
this issue; Rachid et al. this issue). Nevertheless, due to their
capabilities to integrate probabilistic and causal modeling,
increased and more advanced use of BNs in the future will
benefit the practice of ERA. The capability of using a joint
probability distribution to easily examine the potential im-
pact of risk factors and stressors on the probability of neg-
ative outcomes for assessment endpoints allows them to
naturally integrate into the ERA process and provide greater
capabilities for analyzing the total or direct impacts of these
variables on endpoints. Interpreting and communicating
uncertainties is easier with BNs than with more traditional
probabilistic methods used in ERA (Verdonck et al. 2003).
Future scenarios can also be examined with the inferential
capabilities of BNs, which makes them especially valuable

for analyzing multiple stressor and climate change inter-
actions with localized sources of stress. Bayesian networks
are uniquely capable for addressing “what‐if” questions,
simulating hypothetical scenarios within a causal framework
and quantifying the contribution of different variables to the
observed outcome. Until recently, the latter has been largely
the domain of randomized controlled trials, and BNs can
address causal problems in situations where controlled ex-
periments are not feasible or desirable (Moe et al. 2020).
Furthermore, they allow causal inference in situations where
data are sparse (Moe et al. this issue), or conversely, where
observational data are more abundant but not collected as
part of a rigorous experimental design (Carriger et al. this
issue). Bayesian network modeling approaches have more
advantages compared to other probabilistic approaches,
including explicit representation of causal knowledge in the
conceptual model (Moe et al. this issue), machine learning
for identifying the best joint distribution to represent com-
plex data (Carriger et al. this issue), and diagnostic inference
for environmental conditions required to meet management
goals (Mitchell et al. this issue; Rachid et al. this issue). Di-
agnostic inference is especially suited to retrospective risk
assessments where past injuries are in question. The capa-
bilities and limitations of these and other areas have not yet
been fully explored in the context of ERA. We conclude that
with the continued increase in use of BNs in ERA, best
practices will become clearer and this tool will become even
more useful for assessment and communication of envi-
ronmental risk.
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