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a b s t r a c t 

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent 

months. This provides a potential resource to predict the influence of seasonal climate anomalies on sur- 

face water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reser- 

voirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a 

link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynam- 

ics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific 

community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a fea- 

sible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake 

models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has 

been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in 

this study for four catchment-lake systems to help in their proactive management. We assessed the per- 

formance of the resulting seasonal forecasts of discharge and water temperature by comparing them with 

hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance 

using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or 

quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate 

forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Fore- 

casts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations 

of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low per- 

formance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge 

present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had 

higher performance in natural lakes than in reservoirs, which means human water control is a relevant 

factor affecting predictability, and the performance increases with water depth in all four case studies. 

Further investigation into the skillful water temperature predictions should aim to identify the extent to 

which performance is a consequence of thermal inertia (i.e., lead-in conditions). 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Water resources are closely dependent on the services sup- 
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ty ( Carpenter et al., 2009 ), and lakes and reservoirs constitute 

ey ecosystems for the provision of such services. However, these 

ervices are continuously threatened by climate extreme events 

hours to days), seasonal climate variations (1–3 months), and 

ong-term climate change (many years), which are affecting water 

anagement decisions around the world. 

Hence, climate predictions encompass a time frame that can 

otentially be useful for early decision-making in the water re- 

ources sector, allowing implementation of preventive and mitiga- 

ion measures to reduce the vulnerability to foreseen climate ex- 

reme anomalies (e.g., floods and droughts ( Pozzi et al., 2013 )). 

his decision-making is affected depending on the time scale, from 

ours to many years, of the climate anomalies. 

We focus on seasonal forecast (1–3 months) of key variables 

or the water sector for two reasons: (i) there are some studies 

resenting predictions in a short-term scale in water bodies (e.g. 

rassl et al., 2018; Thomas et al., 2020 ) and many relate projections 

f long-term climate change to consequences in the same systems 

e.g. Komatsu et al., 2007; Woolway et al., 2021 ), but studies re- 

ating seasonal prediction to lakes or reservoir are less common; 

ii) for water managers, a short-term prediction helps in taking re- 

ctive decisions and a long-term projection supports general de- 

isions beyond the real-case timing of water management, but a 

easonal prediction for water quality variables introduces an op- 

ortunity for controlling key variables in a feasible time-scale for 

ater management treatment. 

In addition, most seasonal climate prediction exercises in wa- 

er resources have focused on hydrologic applications ( Bazile et al., 

017; Emerton et al., 2018; Greuell et al., 2019; Luo et al., 2007; 

osenberg et al., 2011; Yuan et al., 2011 ), but in this study, we go

ne step further and also connected seasonal climate predictions 

o water bodies, such as lakes and reservoirs. 

Besides a few basic applications (e.g., 

limate.copernicus.eu/lake-surface-water-temperature; no longer 

perational), studies applying seasonal climate prediction for fore- 

asting water temperature (the most basic water quality variable) 

n lakes and reservoirs are absent in the literature, despite the 

anifold consequences of temperature changes on lake thermal 

egimes, lake ecosystem processes, and the provision of lake 

cosystem services ( Yang et al., 2020 ). This is partly attributable to 

he challenges in applying seasonal climate forecasts to catchment 

ydrologic simulations and water temperature predictions in lakes 

 Sene et al., 2018; Turner et al., 2017; Yuan et al., 2015 ). 

These challenges are overcome in this study, such as: the com- 

lexity of accessing the climate data by non-climate experts (mul- 

iple databases, formats, and variables) ( Wood et al., 2002 ); the 

patial-scale mismatch between the global circulation modeling 

ata and a local catchment ( Blöschl and Sivapalan, 1995 ); finding a 

roper physical representation of the problem (impact model) ap- 

licable in different forecasting scenarios ( Gupta et al., 1998 ); the 

robabilistic nature of the predictions; and the mounting uncer- 

ainty propagated to the final prediction through the connection of 

limate, catchment, and lake models. 

The aim of this work is to establish a feasible and reproducible 

orkflow that facilitates the application of seasonal climate fore- 

asts to the water sector through a catchment-lake impact model 

hain. The workflow connects seasonal climate data to hydrologic 

nd lake modeling to obtain seasonal predictions of water temper- 

ture profiles. 

The workflow evaluates the performance of the predictions in 

elation to three areas: (i) bias-corrected (calibration process to ad- 

ust climate model outputs using as reference local observations) 

easonal climate forecasts for hydrologic and lake model forcing 

ariables. Note that this step is necessary before using model data 

n impact studies; (ii) lake inflow discharge derived from hydro- 

ogic models forced by bias-corrected seasonal climate forecasts; 
2 
nd (iii) lake temperature profiles derived from lake models forced 

y model-derived discharge and bias-corrected seasonal climate 

orecast. 

The implementation of the workflow is exemplified in 

our case studies (catchment-lake (or reservoir) systems) for 

hich water temperature is a relevant water quality vari- 

ble that is routinely monitored by managers and stake- 

olders. To facilitate reproducibility, code and data are pub- 

icly available at https://nivanorge.github.io/seasonal _ forecasting _ 

atexr/ and https://github.com/NIVANorge/seasonal _ forecasting _ 

atexr/tree/main/paper1 _ Mercado _ etal 

The following sections introduce the workflow and its applica- 

ility. Section 2 presents the four catchment-lake/reservoir systems 

here the workflow was applied, describes the different climate 

ata used (seasonal forecast and reanalysis) and the preprocess- 

ng needed to use them on a local scale, and introduces the hy- 

rologic and lake/reservoir temperature models (hereafter termed 

lake models”). Section 3 introduces the workflow. Section 4 shows 

he results of performance evaluations for seasonal climate fore- 

asts (i.e., seasonal predictions of discharge and lake model me- 

eorological forcing variables) and impact variable forecasts (i.e., 

easonal predictions of discharge and lake/reservoir temperature). 

ection 5 discusses the implications of our results in terms of fu- 

ure applications and limitations. Finally, Section 6 highlights the 

ain conclusions of the manuscript. 

. Methods 

.1. Catchment-lake systems 

The workflow presented here describes the application of sea- 

onal climate forecasts to four geographically separate catchment- 

ake/reservoir case studies ( Table 1 ) included in the EU-funded 

ATExR project ( https://watexr.eu and https://nivanorge.github.io/ 

easonal _ forecasting _ watexr/ ) ; three of them located in Europe 

nd one located in South Australia ( Fig. 1 ). The Australian case 

tudy was selected to provide an example application of the work- 

ow in a region of the world where seasonal climate forecasts 

re typically more skillful (better performance) than in Europe 

 Zhang et al., 2019 ); however, as we further demonstrate, this was 

ot the case on this occasion. 

To implement the performance assessment of the seasonal fore- 

ast, the availability of long-term term water quality data is not 

eeded but is recommended (especially in this case, where we 

re introducing the workflow), and these four case studies have 

he information needed to validate the results. However, the use 

f pseudo-observations or reanalysis (see next section), as used in 

his study, provides the opportunity to apply the workflow to any 

ater body, even under very different climate conditions and lim- 

ted observations (see discussion section). 

The details relating the actual management challenges and 

ther characteristics of the four catchment-lake systems can be 

ound in supplementary material (Supplementary.pdf) at https:// 

it.io/J3tDN (GitHub). 

.2. Climate data 

We used two different climate datasets in this study, a climate 

eanalysis and a seasonal climate forecasting product. These two 

roducts are necessary to implement a performance assessment, or 

n other words, to assess whether the forecast system has skill or 

ot. The word “skill“ is common in climate science but less com- 

on in water science. “Skill” is a metric used for seasonal forecast 

erformance evaluation, a general definition is: “a set of forecasts 

s “skilful” if it is better than another set, known as the reference 

orecasts. Skill is therefore a comparative quantity rather than an 

https://nivanorge.github.io/seasonal_forecasting_watexr/
https://github.com/NIVANorge/seasonal_forecasting_watexr/tree/main/paper1_Mercado_etal
https://watexr.eu
https://nivanorge.github.io/seasonal_forecasting_watexr/
https://git.io/J3tDN
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Table 1 

Main characteristics of lakes and reservoirs studied. 

Case study Country Altitude (m) Surface area (ha) Volume (hm 

3 ) Water retention time (years) Max. depth (m) Mixing regime 

Sau Spain 425 575 165 0.20 60 monomictic 

Mt. Bold Australia 244 254 46.4 0.2–0.6 years 44.5 monomictic 

Vansj Norway 26 3600 252 1.1 years 19 dimictic 

Wupper Germany 250 211 26 0.20 years 31 dimictic 

Fig. 1. a) Location of the four catchment-lake/reservoir systems used to develop our workflow for seasonal probabilistic lake/reservoir water temperature and discharge 

forecasts. Three are located in Europe and one in South Australia. It also shows the spatial resolution of the seasonal climate forecast system (SEAS5, 1 ◦ used in the four 

systems). b) Shows the reanalysis or (climate) pseudo-observation (ERA5, 0.25 ◦) used in the four systems. This is an example for the Spanish case study (Sau Reservoir), but 

the same resolution and datasets apply for all case studies. The figure illustrates the Ter River watershed boundary in relation to the digital elevation model (colors) and the 

studied lake (Sau Reservoir, black point) for this case study. 
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S  
bsolute quantity” ( Mason, 2013 ), i.e., the skill reflects the perfor- 

ance or quality of the forecast system. 

A reanalysis is a pseudo-observation obtained from model- 

ng exercises and data assimilation applied to local measured 

bservations (that might be more precise but limited in time 

nd space) to obtain historical data with a homogeneous spa- 

ial and temporal coverage. Taking advantage of its potential, here 

e used it for: (i) workflow verification (performance assess- 

ent) in past conditions (known as hindcast period) to build 

onfidence in subsequent predictions about the future, (ii) for 

ias-correction of climate predictions and (iii) to derive historical 

pseudo-)observations for catchment hydrology (i.e., discharge) and 

ake/reservoir thermal metrics (i.e., water column temperatures at 

ultiple depths) for the same hindcast period. We use the latest 

eanalysis ( Hersbach et al., 2020 ) produced by the European Cen- 

re for Medium-Range Weather Forecasts (ECMWF): ERA5. Specific 

etails about ERA5 are presented in Table 2 . 

A seasonal forecasting system provides an ensemble of cou- 

led ocean-atmosphere model runs (known as members), whereby 
3 
ach member represents a different prediction of the medium- 

erm (weeks to months) evolution of the climate system (i.e., a co- 

arying multi-variable system) with global coverage. This ensemble 

f members must be used together with a reanalysis with histor- 

cal observations (ERA5 in this study), it is imposed by the com- 

lexity, uncertainties, and non-linear interactions in the Earth cli- 

ate system. We used the latest seasonal forecasting system pro- 

ided by the ECMWF: SEAS5 ( Johnson et al., 2019 ). Specific details 

bout SEASS5 are presented in Table 2 . 

SEAS5 provides both real-time seasonal forecasts and retrospec- 

ive seasonal forecasts for past years (hindcasts), but in this study, 

nly retrospective seasonal forecasts (hindcasts) were used to vali- 

ate the workflows. Due to the intrinsic probabilistic nature of sea- 

onal forecasts, it is essential to provide measures of the quality 

accuracy, reliability, etc.) and how much better are the forecasts 

ompared to a reference prediction system (e.g, climatology). In 

his study, a hindcast is used for this forecast verification. 

The graphical comparison of the spatial resolution between 

EAS5 and ERA5 is shown in Fig. 1 a and b, respectively. The pe-



D. Mercado-Bettín, F. Clayer, M. Shikhani et al. Water Research 201 (2021) 117286 

T
a

b
le
 
2
 

C
li

m
a

te
 
D

a
ta

: 
d

e
ta

il
s 

o
f 

th
e
 
re

a
n

a
ly

si
s 

a
n

d
 
se

a
so

n
a

l 
fo

re
ca

st
 
sy

st
e

m
 
u

se
d
 
in
 
th

is
 
st

u
d

y.
 
A

ll
 
d

a
ta

se
ts
 
h

av
e
 
b

e
e

n
 
re

tr
ie

v
e

d
 
u

si
n

g
 
th

e
 
C

o
p

e
rn

ic
u

s 
C

li
m

a
te
 
D

a
ta
 
S

to
re
 
(c

d
s.

cl
im

a
te

.c
o

p
e

rn
ic

u
s.

e
u

) 

o
r 

U
n

iv
e

rs
it

y
 
o

f 
C

a
n

ta
b

ri
a
 
cl

im
a

te
 
U

se
r 

D
a

ta
 
G

a
te

w
a

y
 
(U

D
G

, 
m

e
te

o
.u

n
ic

a
n

.e
s/

tr
a

c/
w

ik
i/

u
d

g
, 

C
o

fi
ñ

o
 
e

t 
a

l.
, 

2
0

1
8
 ).
 

T
y

p
e
 

N
a

m
e
 

T
im

e
 
co

v
e

ra
g

e
 

R
e

so
lu

ti
o

n
 

M
e

m
b

e
rs
 
(r

u
n

s)
 

Le
a

d
 
ti

m
e
 

V
a

ri
a

b
le

s 
fo

r 
h

y
d

ro
lo

g
ic
 
m

o
d

e
li

n
g
 

V
a

ri
a

b
le

s 
fo

r 
la

k
e
 
m

o
d

e
li

n
g
 

S
e

a
so

n
s 

st
u

d
ie

d
 

R
e

a
n

a
ly

si
s 

E
R

A
5
 

1
9

8
8

–
2

0
1

6
 

0
.2

5
 

N
A
 

N
A
 

p
r,
 
t 

p
r,
 
t,
 
u

-v
, 

sp
ri

n
g

:M
a

r-
M

a
y
 

tm
in
 
a

n
d

, 
rh

, 
cc

, 
su

m
m

e
r:

Ju
n

-A
u

g
 

tm
a

x
 

a
n

d
 
sr
 

a
u

tu
m

n
:S

e
p

-N
o

v
 

w
in

te
r:

D
e

c-
F

e
b
 

S
e

a
so

n
a

l 
fo

re
ca

st
 

S
E

A
S

5
 

1
9

9
3

–
2

0
1

6
 

1
 

2
5
 

1
 

p
r,
 
t 

p
r,
 
t,
 
u

-v
, 

sp
ri

n
g

:M
a

r-
M

a
y
 

tm
in
 
a

n
d

, 
rh

, 
cc

, 
su

m
m

e
r:

Ju
n

-A
u

g
 

tm
a

x
 

a
n

d
 
sr
 

a
u

tu
m

n
:S

e
p

-N
o

v
 

w
in

te
r:

D
e

c-
F

e
b
 

p
r:
 
p

re
ci

p
it

a
ti

o
n

; 
t,
 
tm

in
 
a

n
d
 
tm

a
x

: 
m

e
a

n
 
m

in
im

u
m
 
a

n
d
 
m

a
x

im
u

m
 
te

m
p

e
ra

tu
re

; 
u

-v
: 

w
in

d
 
sp

e
e

d
; 

rh
: 

re
la

ti
v

e
 
h

u
m

id
it

y
; 

cc
: 

cl
o

u
d
 
co

v
e

r;
 
sr

: 
so

la
r 

ra
d

ia
ti

o
n

. 

r

v

b

c

T

w

2

f

m

p

t

g

t

v

t

t

a

f

m

(

s

e

2

l

a

w

o

o

s

p

c

m

fl

M

h

S

w  

t

(

t

p

(

c

h

S

M

m

(

b

a

p

b

f

S

b

t

c

4 
iod from 1994 to 2016 is considered in this study for the same 

ariables selected for the ERA5 data. The analysis is focused on the 

oreal seasons (Table 1), with one month as lead time (i.e. fore- 

asts are initialised one month in advance of the target season). 

o access, download, bias-correct and visualize the climatic data, 

e used an R based framework (climate4R bundle, Iturbide et al., 

019 ) 

Prior to hydrologic and lake model forcing and retrospective 

orecast performance (skill) evaluation, seasonal climate forecast 

embers must be pre-processed to minimise systematic bias im- 

licit in the raw gridded outputs of global climate models (relative 

o climate (pseudo-)observations; ERA5 reanalysis in this case). 

The quantile mapping technique was selected to correct the 

lobal climate model data used ( Gutiérrez et al., 2018 ). We used 

he empirical approach (EQM) due to its ability to deal with multi- 

ariate problems ( Wilcke et al., 2013 ). Specific details about this 

echnique are presented in supplementary material (Supplemen- 

ary.pdf) at https://git.io/J3tDN (GitHub). 

The resulting bias-corrected data were used for hydrologic 

nd lake model meteorological forcing. The time-series obtained 

or appended ERA5-SEAS5 meteorological hydrologic and lake 

odel forcing variables revealed smooth transitions from climate 

pseudo-)observations during the spin-up period (ERA5) to the sea- 

onal climate forecast ensemble predictions (SEAS5); we found no 

vidence of discontinuities or “jumps”. 

.3. Hydrologic and lake temperature modeling 

Owing to different flow regimes and water management chal- 

enges in the various catchment-lake/reservoir systems, we used 

 variety of hydrologic and lake models. However, the common 

orkflow transcends model choices by providing common meth- 

ds and code to manipulate input and output data for the vari- 

us models. The role of the models in the workflow is producing 

easonal forecasts for impact variables (discharge and water tem- 

erature profiles), but are not the main focus of the article, nor is 

omparing the catchment-lake systems (in which case, it would be 

andatory to use the same model setups). 

Four hydrologic models were used to simulate lake/reservoir in- 

ow discharge; one for each case study. The mesoscale Hydrologic 

odel (mHM v5.9: http://www.ufz.de/mhm ) was used to simulate 

ydrology in the Ter River catchment, which is the main inflow for 

au Reservoir. The Génie Rural (GR) suite of models implemented 

ithin the R package airGR ( Coron et al., 2017 ) were used to model

he inflows for the Wupper Reservoir and the Mt. Bold Reservoir 

Onkaparinga and Echunga Creek), namely GR6J and GR4J, respec- 

ively. The hydrologic module of the SimplyP catchment model for 

hosphorus, SimplyQ, was used to model the inflows to Lake Vansj 

Norway), and is described in detail by Jackson-Blake et al. (2017) . 

Two 1D lake models were used to simulate lake/reservoir water 

olumn temperature. The General Ocean Turbulence Model (GOTM, 

ttp://gotm.net ) was used for simulating the thermal dynamics of 

au Reservoir (Spain) and Lake Vansj (Norway). The General Lake 

odel (GLM, Hipsey et al., 2019 ) was used for simulating the ther- 

al dynamics of the Mt. Bold and Wupper reservoirs. 

Calibration of models against observations using reanalysis data 

pseud-observations) was implemented for all case studies. Ta- 

les 1 and 2 in the supplementary material (Supplementary.pdf) 

t https://git.io/J3tDN (GitHub) provide details about calibration, 

eriods and fitting statistics; plots showing the resulting cali- 

ration are show at the same link following the corresponding 

older for each case study, e.g, Spain/River/calibration_plots or 

pain/Lake/calibration_plots, for the Spanish case study (since cali- 

ration plot contains observations, for Australia they are not shown 

o avoid issues that could compromise the data provider commer- 

ially or reputationally). 

https://git.io/J3tDN
http://www.ufz.de/mhm
http://gotm.net
https://git.io/J3tDN
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Fig. 2. Schematic illustration of climate, hydrologic and lake data collation required for workflow implementation in each catchment-lake/reservoir systems to produce 

a single seasonal climate forecast during the hindcast period. The scheme shows left to right: (i) atmospheric data pre-processing including bias correction applied to 

the seasonal climate forecasts (SEAS5) using the reanalysis data (ERA5) as a previous step before running the impact models; (ii) the hydrologic part implemented in the 

catchment which includes the hydrologic model used to produce the discharge forced by the seasonal climate forecast; and (iii) the lake part implemented in lakes/reservoirs 

consisting in the lake temperature model considered to predict water temperature. 
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Finally, after calibration, lake models (water temperature cali- 

rated) and hydrologic models (discharge calibrated) were forced 

ith ERA5 data for the full reanalysis period (1988–2016), obtain- 

ng pseudo-observations of discharge and water temperature pro- 

le for the same period. 

. The workflow: seasonal prediction 

The workflow to apply seasonal forecasting to the four 

atchment-lake/reservoir systems followed a two-step process. 

easonal climate forecasts were downscaled (see Section 3.1.1.) 

efore forcing hydrologic and lake temperature models in a se- 

uential chain; thus incorporating the influence of both inflow 

ischarge and meteorological forcing on lake water temperature 

 Fig. 2 ). The downscaling procedure corrects the bias associated 

ith the seasonal climate forecast data (SEAS5) before using it to 

orce the hydrologic and lake temperature models. 

This correction is implemented after calibrating and validat- 

ng the models for water temperature and discharge using ERA5 

s meteorological pseudo-observational forcing data (Tables 1 and 

 of supplementary material (Supplementary.pdf) in https://git.io/ 

3tDN (GitHub) and calibration plots in the same link). 

Seasonal forecast ensemble predictions were derived for each 

oreal season and case study model chain (i.e., watershed and 

ake temperature models) considering three periods: model spin- 

p (forced by ERA5), forecast initialisation month (SEAS5), and tar- 

et season (SEAS5) (See Fig. 3 as an example of Spring 2003). 

The impact models need a spin-up period before the forecast 

nitialisation period to avoid the impact of physically inconsis- 

ent initial hydrologic and lake conditions across state variables 

n model results. Trial and error showed that the hydrologic mod- 

ls were no longer affected by initial conditions (mainly related to 

ubsurface water storage) after 5 years, whereas lake temperature 

odels were insensitive to initial conditions after 1 year of simu- 

ation. Spin-up periods were simulated using ERA5. Thus, for every 

odelled season during the hindcast period (time range 11/1993–

1/2016, that is, 92 runs from 23 years x 4 seasons), the follow- 

ng procedure was implemented to obtain seasonal river discharge 

hydrologic) and surface and bottom water temperature (lake) en- 

emble predictions: 

1. the impact models (hydrologic and lake) were warmed up 

(spin-up) using ERA5, 

2. then a 4-month long simulation was run driven by the 25 en- 

semble members from the bias-corrected SEAS5 hindcast set for 

each initialisation considered (e.g., February for spring). Hydro- 

logic and lake model outputs for the final 3 months (March to 

May) corresponding to the target season are selected (for cal- 

culation of probabilistic expectations), while the initialisation 
5 
month is removed from the analysis since it is considered as 

a transitory period. 

This procedure was applied for each case study and is exem- 

lified for Sau Reservoir in Fig. 3 . To simulate the spring of 2003, 

he hydrologic and lake models were first run for 5 and 1 year 

espectively using ERA5 as spin-up forcing data. Then, the first 

our months of each of the 25 ensemble members of the bias- 

orrected SEAS5 hindcast initialised in February 2003 were used 

or model forcing. Finally, the seasonal forecasts resulting from the 

arget season, March to May for spring of 2003, were selected for 

ubsequent derivation of probabilistic analysis. It is important to 

ention that our workflow implies that most of the uncertainty 

ropagated to final forecasts comes from the 25 ensemble mem- 

ers of the seasonal climate prediction. Although it may be rea- 

onable to consider the climate prediction as the main source of 

ncertainty in the modeling chain (this has been recently demon- 

trated by Thomas et al., 2020 in a similar workflow-like study), 

ther sources of uncertainty would also be present (e.g., uncer- 

ainties arising from the parameterisation of hydrologic and lake 

emperature models or structural uncertainty in those models). 

In this paper our focus is on exploring how errors introduced by 

he seasonal climate forecasts propagate through the process-based 

odel chains. We examine whether seasonal climate forecasts in- 

roduce any added value in seasonal lake predictions compared 

o predictions produced by running models driven by historic ob- 

erved meteorological data alone. Other sources of uncertainty 

e.g., uncertainties in climate reanalysis and lake models them- 

elves) are not considered, nor is model performance compared to 

ctual lake observations; we used lake (pseudo-)observations (al- 

hough calibration details are included in the supplementary ma- 

erials). These additional sources of error, and their significance in 

erms of water management, will be more fully explored in subse- 

uent work. 

.1. Analysing the forecast performance 

To analyse the forecast performance (skill) for climate variables, 

ischarge, and water temperature in the lake, the visualizeR pack- 

ge ( Frías et al., 2018 ) was used to obtain tercile plots ( Fig. 4 ) for

ias-corrected climate variables, discharge, and water temperature 

indcasts. To build a tercile plot for a given variable and season, 

bservations and multi-member ensemble derived predictions of 

he forecast system are categorised into three (anomaly) categories, 

ccording to the statistical distribution of the variable being as- 

essed during the selected season throughout the entire hindcast 

eriod (“Above normal” (upper tercile) for data points falling in 

he percentile range 66–100%, “Normal” for the range 33–66%, and 

Below normal” (lower tercile) for the range 0–33%). 

https://git.io/J3tDN
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Fig. 3. Time series of the atmospheric mean temperature (top) from ERA5 data set (black line) followed by bias-corrected SEAS5 seasonal forecast for the initialisation of 

February 2003, and seasonal forecasts of discharge (middle) and lake temperature (bottom and surface) for Spring 2003. Only one month (January 2003) is shown on the 

top panel for the spin-up period for better readability of the rest of the periods. Gray shading shows the spread of the ensemble (25 members) for the initialisation-month 

(February 2003) and blue shading for the target season (spring 2003). The ensemble mean is represented by a solid line. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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A tercile plot illustrates the distribution of hindcast member 

easonal summary statistics among these three anomaly categories 

or all years in the hindcast period, together with an indication 

f the categories into which each year’s seasonal summary statis- 

ic calculated from observations falls. Forecast member seasonal 

ummary statistic distributions among categories are quantified in 

erms of proportions per category (i.e., 0 for no members in a cate- 

ory, 1 for all members in a category) and are indicated by a color 

amp. Each year’s corresponding “observed anomaly” is indicated 

y a symbol in the appropriate category. The tercile plot therefore 

acilitates a visual comparison between the relative strengths of 

robabilistic expectations among anomalies derived from the sea- 

onal forecast system and observed anomalies for the entire hind- 

ast period. 
e

6 
Two common measures to evaluate the skill of the probabilistic 

orecast ( Jolliffe and Stephenson, 2003; Mason, 2013 ) for each vari- 

ble were used: the Ranked Probability Skill Score (RPSS) and the 

elative Operating Characteristic Skill Score (ROCSS). The Ranked 

robability Score (RPS) compares the probabilities given by the 

orecast to the distribution of observations over a given number 

f discrete probability categories (3 considered here: above nor- 

al, normal and below normal), and it is calculated as a squared- 

rror between the probability distribution of forecasts and obser- 

ations across categories. The RPSS compares RPS for the forecast 

ith RPS from a reference (usually average climate), which in this 

tudy, is the climatology derived from (pseudo)observation. Then, 

PSS is a measure of the relative improvement of the probabilis- 

ic ensemble-based forecast over climatology in predicting the cat- 

gory into which the observations fall. As a result, an RPSS > 0 
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Fig. 4. Tercile plots for seasonal discharge, surface and bottom water temperature forecasts during selected seasons across the four case studies. Forecast probabilities are 

shown in a white (0, no member forecasts that category) to black (1, all the members agree in the same category) scale. This scale applies for the probability for the next 

season of being above, within and below normal conditions (categories). The bullets represent the observed category according to the ERA5 dataset, so individual hits and 

misses can be analysed along the period. RPSS values are shown at the top of each panel and the ROCSS values on the right of the three categories. ∗ indicate significant 

values (at 95% confidence). ∗∗ Austral summer. 

7 
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eans that forecasts is better than the reference (1 indicates per- 

ect multi-category probabilistic forecasts), while a zero value or 

ess indicates the forecast performed not better than the reference 

climatology in this study). 

On the other hand, the Relative Operating Characteristic (ROC) 

uantifies the ability of the forecast to discriminate between 

vents and non-events (i.e., translating the probabilistic forecast 

nto a deterministic forecast by picking the most probable tercile). 

OC is based on the ratio between the hit rate and the false alarm

ate and is evaluated for each category (above normal, normal or 

elow normal) separately. ROCSS evaluates the relative improve- 

ent to ROC provided by the forecast expectations relative to ref- 

rence forecast, and ranges from 1 (perfect discrimination) to 1 

perfectly bad discrimination), a zero value indicating no skill (low 

uality or performance) compared to a long-term climatology. 

. Results and discussion 

.1. Seasonal climate forecast 

According to RPSS values, there was no significant (95% confi- 

ence) improvement of the prediction respect to climatology for 

he climate variables in any of the case studies, except for poten- 

ial evaporation during spring in Mt. Bold Reservoir (Australia), and 

uring summer in Wupper Reservoir (Germany). This suggests sub- 

tantial biases in the forecast for climate variables. 

However, ROCSS scores showed more significant results for all 

ase studies in some terciles and variables, which suggested some 

iscrimination power: autumn potential evaporation and summer 

ew point for Sau Reservoir; solar radiation, horizontal wind, po- 

ential evaporation, pressure, cloud cover, and temperature in au- 

umn, pressure and dew point in winter, long-wave radiation in 

pring, and cloud cover in summer for Mt. Bold Reservoir; solar 

adiation, long-wave radiation, cloud cover, and vertical wind in 

inter, pressure, cloud cover, long-wave radiation, dew point, tem- 

erature, and both wind components in spring, and long-wave ra- 

iation in summer for Vansjo (Norway); and temperature in au- 

umn, long-wave radiation and vertical wind in winter, dew point 

n spring and horizontal wind in summer for Wupper Reservoir. 

ote that some of these significant results could also be due to 

hance given the 95% significance level used in the test. 

The complete set of plots and results for all climate variables 

nd seasons for each case study can be found at https://git.io/ 

3tDN (GitHub), from here following the folder for each case study, 

.g., “Spain/Atmosphere/plots” for the Spanish case study). 

.2. Seasonal forecast for discharge and water temperature 

In this section we analyze predictions for discharge and water 

emperature for one relevant season for each case study ( Fig. 4 ). 

ubsequently, we evaluate all seasons for each case study ( Table 3 ). 

A key-season for the Spanish case study (Sau Reservoir) is au- 

umn, because most of the annual rainfall is produced during these 

 months, influencing the water quantity and quality of the river 

nd, consequently, of the reservoir. Management of the reservoir 

uring this season requires a number of decisions by the stake- 

older to keep water quality at the inlet of the water treatment 

lant within safe operational standards (e.g., temperature, turbid- 

ty, reduced metals, organic matter). Among management actions, 

utflow rate and withdrawal depth selection are the most relevant. 

owever, predictions for discharge from the Ter River showed low 

alues of the RPSS suggesting that they are not reliable (biased), 

ven if there was significant discrimination (ROCSS value) for the 

pper tercile. Overall, the analysis suggests that the predicted skill 

or discharge is very limited, i.e., there is a low performance of 

easonal forecast discharge ( Fig. 4 ), and that while we found some 
8 
apacity for discrimination, predictions seemed to be biased (very 

ow RPSS). 

Despite the absence of skill found in the seasonal climate and 

ischarge forecasts in Sau Reservoir in autumm, the water tem- 

erature forecasts in this system revealed discrimination skill (it 

s able to discriminate the occurrence or not of events) for the 

ower and upper terciles for bottom temperature ( Fig. 4 ). However, 

he forecast does not improved respect to climatology (non signif- 

cant RPSS) in deep layers, probably due to the effect on RPSS of 

orecats which are sometimes very concentrated in the wrong ter- 

ile. That discrimination skill is apparently disconnected from pre- 

iction skill in climate and discharge suggests that the source of 

redictability for water temperature in deep water was the iner- 

ia of the system. In surface waters, the skill was non-significant 

the performance of the forecast was low for surface temperature) 

robably because this layer is more affected by inflow and cli- 

ate conditions which we cannot predict with much confidence. 

imilar results were found for the rest of the seasons ( Table 3 ),

ith the presence of more discrimination skill for bottom tem- 

erature (5 terciles in total) than for surface layers (2 terciles in 

otal). Only spring forecasts for surface waters presented improve- 

ent respect to climatology (significant RPSS), but no discrimina- 

ion skill (non significant ROCSS) was detected. In general, there 

ould be some windows of opportunity for using seasonal predic- 

ion for this case study, particularly when discriminating between 

elow and above normal categories during summer and autumn. 

he low RPSS scores suggested biased forecasts that could be im- 

roved by additional improvements to impact models calibration. 

The Australian case study (Mt Bold reservoir) showed very little 

kill (low performance) across all meteorological variables for each 

eason. The winter season (which is the austral summer) is char- 

cterised by the absence of precipitation, leading to multiple man- 

gement decisions related to transferring water from other sources, 

lgal bloom events and in general, water quality issues associated 

ith low flows. From the discharge and water temperature re- 

ults ( Fig. 4 ), only bottom temperature shows the below normal 

ategory as significant. In spite of this, having knowledge of bot- 

om temperature conditions in this season is important for assess- 

ng the potential risks of phosphorus re-suspension and potential 

ransfer further downstream. Overall, for the impact models, there 

ere few variables that exhibited significant skill, also supported 

y the rest of the seasons ( Table 3 ). In summer, the lower category

as significant for bottom temperature, no variables were signif- 

cant in autumn and one of the inflows, Echunga Creek, had sig- 

ificance for the lower category in spring. This highlights that for 

his reservoir there is low confidence in climate and impact model 

redictions. 

For the Norwegian case study (Lake Vansj), the most skillful 

orecasts for both, the river and lake, were obtained during spring 

ith the highest ROCSS obtained for lower and higher categories 

see Fig. 4 ). ROCSS show significant discrimination skill (the system 

s prone to discriminate between occurrence and non-occurrence 

f events) for the outputs of the coupled hydrologic and lake 

odel: discharge and surface and bottom lake temperature; while 

PSS attributed significant improvement respect to climatology to 

he surface and bottom temperature forecasts. For the other sea- 

ons ( Table 3 ), some discriminating skill (ROCSS) was found in 

inter for surface (below normal category) and bottom (below and 

bove normal categories) temperature. Autumn was also another 

nteresting season, since the seasonal forecast improved with re- 

pect to climatology (significant RPSS) for surface and bottom tem- 

erature. Lake Vansj presented the best prediction skill (the best 

erformance) among all case studies because (i) it has the high- 

st (or less bad) predictability in the atmospheric variables, espe- 

ially in spring and winter, (ii) it shows some skill in discharge, 

articularly in spring, and (iii) there is less human management 

https://git.io/J3tDN
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Table 3 

Summary of all significant skill scores, both ROCSS and RPSS for each case study in all seasons. Since the ROCSS discriminate among terciles, 3 

categories (above normal, normal and below normal) are shown, while the RPSS reflect the improvement or not of the seasonal forecast with 

respect to climatology. Significant values are represented by an “x”. 

Discharge 

Signif. ROCSS Signif. RPSS 

Tercile Winter Spring Summer Autumn Total skillful Winter Spring Summer Autumn 

above x 

Sau (Spain) normal x 3 

below x 

above 

Mt. Bold (Australia) normal 1 

below x 

above x 

Vansjo (Norway) normal 2 

below x 

above 

Wupper (Germany) normal 0 

below 

Surface Temperature 

Signif. ROCSS Signif. RPSS 

Tercile Winter Spring Summer Autumn Total skillful Winter Spring Summer Autumn 

above x 

Sau (Spain) normal 2 x 

below x 

above 

Mt. Bold (Australia) normal 0 x x 

below 

above x 

Vansjo (Norway) normal 3 x x 

below x x 

above 

Wupper (Germany) normal 0 x x 

below 

Bottom temperature 

Signif. ROCSS Signif. RPSS 

Tercile Winter Spring Summer Autumn Total skillful Winter Spring Summer Autumn 

above x x x 

Sau (Spain) normal 5 

below x x 

above 

Mt. Bold (Australia) normal 2 

below x x 

above x x 

Vansjo (Norway) normal 4 x x 

below x x 

above x x 

Wupper (Germany) normal 4 x x 

below x x 
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ontrolling the water balance, which reduces the need for precise 

nflow and outflow forecasts (which were required for the other 

hree case studies) and therefore avoids (“unpredictable”) anthro- 

ogenic consequences affecting the thermal dynamics of the water 

ody. 

For the German case study (Wupper Reservoir), summer rep- 

esents the most critical season in terms of water quality owing 

o the association between high temperature and algal growth. In 

erms of seasonal climate forecasts, there was no skill (low perfor- 

ance) in any of the meteorological variables in summer ( Fig. 4 ). 

or this target season, seasonal forecasts for discharge and surface 

emperature revealed no significant discrimination or improvement 

espect to climatology, whereas bottom temperature exhibited sig- 

ificant RPSS and discrimination (ROCSS) skill for the below and 

bove normal categories. For the Wupper Reservoir, which has a 

ottom outlet, discrimination skill for bottom temperature is rele- 

ant as the reservoir’s discharge directly impacts the downstream 

ater quality. For all other seasons ( Table 3 ), there appears to be

o windows of opportunity when discriminating among terciles, 

owever, the RPSS values reflect that SEAS5 can improve the pre- 

iction with respect to climatology in predicting the spring and 
o

9 
utumn seasons for surface temperature, and the autumn season 

or bottom temperature. 

. Applications and limitations 

Overall, the predictability for climate variables in our case stud- 

es was limited to some combinations of seasons and variables. 

redictability concentrates in Mt. Bold Reservoir and Vansj in au- 

umn and spring, respectively. This is not at odds with the well- 

nown observation that the skill (performance of the forecast sys- 

em) of seasonal climate forecasts at extratropical latitudes is lim- 

ted ( Manzanas et al., 2014 ), and related to windows of opportunity 

onnected to relevant drivers of predictability, such as El Niño/La 

iña events ( Frías et al., 2010 ). 

The limited predictability of climate variables at the seasonal 

cale in our case studies poses a fundamental obstacle for the us- 

bility of hydrologic (discharge) and water quality (water tempera- 

ure) predictions. However, the general trend is that predictability 

ncreases as we move from climate to discharge to lake tempera- 

ure predictions. This is an intriguing result and, although it is out 

f the scope of this study, it may be explained by either the tem- 
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oral or across variables integration of the climate signal by water- 

hed hydrologic processes and lake temperature dynamics, or by 

trong inertia of these two variables. 

If the inertia highly influenced the scores found here, all pre- 

ictability found in this study would be independent of climate 

redictions, and should be attributed to the initial conditions. In- 

eed, a close inspection of the tercile plots across seasons showed 

hat both mechanisms may apply, since correct tercile predictions 

oincided with seasons in which the tercile did not change be- 

ween initial conditions and prediction, but we also identified 

any cases in which a correct prediction implied a change in the 

ercile, suggesting there are windows of opportunity when sea- 

onal climate prediction can be useful. Exploring this in depth will 

e the subject of future work and must be considered in relation 

o statistical power. Benchmarking against climatology and testing 

he seasonal forecast with multiple scenarios should be an appro- 

riate next step to follow. 

In any case, the accumulation of skill, i.e., the increase in per- 

ormance of the forecast system, in the downstream part of our 

odeling chain is a stimulating result suggesting that the mount- 

ng uncertainty as we progress through the modeling chain is not 

n insurmountable obstacle to produce useful seasonal predictions 

or water quality variables. 

Nonetheless, discharge and water temperature predictions 

howed skill intermittently, which indicates that prediction would 

e useful only for certain windows of opportunity (i.e., for certain 

ariables, terciles, and seasons). Also, the improvement of the pre- 

iction respect to climatology (RPSS) and discrimination (ROCSS) 

kill were usually not coincident, suggesting that the workflow can 

e improved by additional calibration of the model chain to move 

owards more useful forecasting. There are several approaches in 

he literature for forecasting hydrologic and water quality variables 

sing statistical approaches such as neural networks ( Palani et al., 

008 ), machine learning ( Barzegar et al., 2018 ) and data assimi- 

ation ( Loos et al., 2020 ), which may be easier to calibrate that

he process-based models used in this study. However, these ap- 

roaches also have limitations, such as the necessity of a large his- 

orical database, which could lead to inaccurate forecasts during 

xtreme events for which extrapolation beyond historical observed 

anges might be required. The use of process-based models makes 

he application of the workflow in data-limited regions/case stud- 

es easier, and would probably be more reliable (than a statistical 

pproach) during climate extreme events. 

The value of process-based models was made evident by the 

killful forecasts for impact variables (discharge and water temper- 

ture) in a background of limited skill (performance) for climate 

ariables. For instance, in Lake Vansj (Norway), the fact that the 

orecasts were most skillful for spring is likely related to the im- 

act of the preceding winter on the lake, e.g., a cold, dry win- 

er would involve lower lake temperature in spring. Similar out- 

omes were also present in Sau Reservoir, where changes in the 

tmospheric component had a low impact on water temperature 

n deep waters during some periods, which suggests inertia of the 

ake was the fundamental source of predictability. This kind of be- 

aviour would be very difficult to mimic with a pure statistical 

odeling chain. 

One limitation worth mentioning in the use of reanalysis 

pseudo-observations), because it introduces an additional level of 

ncertainty to the workflow. Using real observations would be the 

deal option when implementing seasonal forecasting, but then re- 

uces the transferability of the workflow. The comparison of sea- 

onal forecasts with real observations will be subject of future 

ork. Here, we use a ”perfect model assumption so that we can 

pecifically explore how well seasonal climate forecast skill prop- 

gates through seasonal forecasting in lakes. The use of reanaly- 

is together with seasonal forecast systems is a common approach 
10 
hen implementing seasonal forecasting of impact variables (e.g 

echlivanidis et al., 2020; Wood et al., 2016 ). 

Another important issue emerges when predicting inflows and 

utflows in reservoirs, because our analysis suggested it affects 

redictability. This was made evident by the conspicuous reduced 

iscrimination skill (decrease in the performance) for surface and 

ottom water temperature in Mt. Bold and Wupper Reservoirs (2 

nd 1 significant terciles, respectively) compared to Sau Reservoir 

7 significant terciles). This was caused by a slight difference in 

he way water inflows and outflows were modelled to avoid wa- 

er dry-outs in the reservoir during forecasting ( Georgakakos and 

raham, 2008; Li et al., 2014 ). In Mt. Bold and Wupper, inflows 

nd outflows were dynamically corrected during runs to avoid wa- 

er dry-outs (these may result due to inconsistencies between the 

orecasted discharge and the assumed outflows during the fore- 

asted season), while in Sau Reservoir we did not correct for this 

ffect, which resulted in some dummy predictions due to dry-outs 

empty boxes in Fig. 7). However, discrimination skill in Sau was 

igher, suggesting the water level correction algorithm used in Mt. 

old and Wupper should be reconsidered. 

. Conclusions 

Managing water quantity and quality is a challenging task for 

he catchment-lake systems presented here, since managers must 

egulate the water supply and ecological and recreational services 

nder constant, and even unprecedented, changes in climate. This 

equires making decisions according to the changes in water quan- 

ity and quality over time, depending on the influencing mete- 

rological and hydrologic conditions. Currently, the management 

f these lakes/reservoirs is mainly based on previous experience 

nd expert decision. To support this decision-making, we have pre- 

ented a feasible and robust workflow to connect climate forecast 

ata with hydrologic and lake modeling, to obtain seasonal fore- 

asts of discharge and lake temperature profiles. 

Even considering the limited skill (performance) found in our 

easonal predictions vs. climatology, the few windows of oppor- 

unity that seasonal prediction might offer may help managers to 

nticipate general trends of water quantity and quality changes. 

he advanced warning provided by seasonal forecasts could return 

uge benefits in terms of treatment costs, reputation of industry 

nd water authorities, and safe provision of ecosystem services. 

In any case, the probabilistic nature of seasonal predictions and 

he limited skill (performance) found in the studied regions re- 

uires careful approach when informing managers about these pre- 

ictions and the confidence they may place in them. Failing to 

ransparently convey these two properties would compromise the 

se of seasonal predictions in water resource management in a fu- 

ure with more reliable seasonal climate predictions outside the 

ropical regions. However, our study points to some windows of 

pportunity that are worth exploring to make the most of the cur- 

ent state-of-the-art of climate and water quality prediction. 
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