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Ðinh Nho Thái, Josefine Elving and Karl Pedersen

Addresses
1Department of Bacteriology, Animal and Plant Health Agency, Wey-

bridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
2Centre for Zoonoses and Environmental Microbiology - Centre for

Infectious Disease Control, National Institute for Public Health and the

Environment (RIVM), 3720?BA, Bilthoven, The Netherlands
3Department of Animal Health and Antimicrobial Strategies, National

Veterinary Institute (SVA), 751 89, Uppsala, Sweden
4 Institute for Hydrobiology, Technische Universität Dresden, 01217,

Dresden, Germany

Corresponding authors: Börjesson, Stefan (stefan.borjesson@fohm.se),

Berendonk, Thomas U (Thomas.berendonk@tu-dresden.de)
5 Present address: Department of Microbiology, Public Health Agency of

Sweden, 171 82?Solna, Sweden

Available online at www.sciencedirect.com

ScienceDirect
To understand the dynamics of antimicrobial resistance (AMR),

in a One-Health perspective, surveillance play an important

role. Monitoring systems already exist in the human health and

livestock sectors, but there are no environmental monitoring

programs. Therefore there is an urgent need to initiate

environmental AMR monitoring programs nationally and

globally, which will complement existing systems in different

sectors. However, environmental programs should not only

identify anthropogenic influences and levels of AMR, but they

should also allow for identification of transmissions to and from

human and animal populations. In the current review we

therefore propose using antimicrobial resistant Escherichia coli

as indicators for monitoring occurrence and levels of AMR in

the environment, including wildlife.
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multisectoral ‘One-Health’, surveillance of AMR is needed

[1]. However, current surveillance programs primarily

focus on AMR in livestock and isolates from human clinical

cases, with environmental perspectives, including wildlife,

generally omitted. That there is a need for a comprehensive

international environmental AMR monitoring has also

been highlighted by the Codex Alimentarius Intergovern-

mental Task Force on Antimicrobial Resistance (FAO,

http://www.fao.org/fao-who-codexalimentarius/comm-

ittees/committee/en/?committee=TFAMR). Several

recent reviews have also addressed this need and has made

suggestions on objectives and approaches for such a sur-

veillance [2,3��,4]. In this review, we will focus on the

potential of Escherichia coli being an indicator formonitoring

occurrence of clinically important antibiotic resistant bac-

terial phenotypes, such as carbapenems, colistin, and

extended spectrum beta-lactams (ESBL) in the environ-

ment. We will address, how E. coli is used: (i) as an indicator

in AMR surveillance systems worldwide; (ii) for anthropo-

genic faecal pollution of surface water; (iii) in studies that

have described multi-drug resistant E. coli in the environ-

ment; and (iv) availability of standardized laboratory pro-

tocols for handling E. coli.

Goals of environmental AMR surveillance
An indicator for surveillance of AMR in the environment

should not only be suitable for reporting environmental
Table 1

Surveillance systems including E. coli standardized by supranational 

Epidemiological

unit

Sample type Nonse

isolatio

WHO GLASS Patient Clinica

sampl

blood,

EUCAST or CLSI

AST testing

WHO tricycle Patient, person, farm, surface water

location

Clinica

health

human

anima

surfac

EUCAST or CLSI

AST testing

ECDC Patient Clinical sample (e.g. blood, urine,

Cerebral spinal fluid)

Yes 

EFSA Herds Lifestock (cecal samples at slaughter)

Yes

Meat product Retail products

EARS-

Net

Patients Clinical sample (e.g. blood, urine,) Yes 

EARS-

Veta
Diseased Animals

or Herds

Clinical samples from cattle, swine,

chickens (broiler and laying hen),

turkeys, cats and dogs

Yes 

a Not fully implemented during the preparation of this article.
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AMR levels and how these are influenced by anthropo-

genic activities, but it should also enable estimating the

potential risk of transmission to and from human and

animal populations. Since surveillance systems already

exist both in human health and livestock sectors, an

environmental indicator should also complement these

efforts. Another purpose of environmental surveillance

could be to inform about circulation of AMR in the human

population, thus improving current human clinical sur-

veillance systems.

E. coli in current AMR surveillance programs
E. coli is implemented in a multitude of national surveil-

lance programs with several programs producing inte-

grated national reports with human clinical data, livestock

carriage and occurrence on meat-products, with some

reports also including and clinical veterinary data. Exam-

ples of integrated European national reports are Swedres-

Svarm, RESAPATH, UK One Health report, NethMap

and Danmap [5–9]. Similar reports are also produced in

the United states (NARMS, https://www.cdc.gov/narms)

and Canada (CIPARS) [10]. However, to our knowledge

only the Norwegian program NORM has recommended

including environmental perspectives, but there are some

infrequent reports on wildlife from surveillance activities

[11–14]. Supranational AMR surveillance programs also

exist (Table 1) with the largest strategy being the WHO:
organisations (i.e. national schemes are not included but existing)

lective

n

Selective

isolation

Numbers/year AMR

testing

l

e (e.g.

 urine.)

Yes No Depending

on numbers

of isolates

collected

l,

y

s,

ls,

e water

No ESBL In total

about 300/

year

Yes Depending on numbers of isolates

collected

EUCAST

AST testing

ESBL,

pAmpC

CPE

(starting

2021)

170 E. coli/year/country and ESBL

positive E. coli isolates from

170 samples/year/country

EUCAST

AST testing

No Depending on numbers of isolates

collected

EUCAST

AST testing

No Depending on numbers of isolates

collected

EUCAST

AST testing
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The Global Antimicrobial Resistance and Use Surveil-

lance System (GLASS) established in 2015, incorporating

92 countries across diverse income levels (https://www.

who.int/initiatives/glass/). GLASS provides standardized

protocols to capture the frequency of resistance among

high-priority pathogens including E. coli from blood-

stream or urinary tract infections. With respect to One-

Health surveillance WHO has brought forward the Tri-

cycle Protocol, covering monitoring of ESBL-producing

E. coli in humans, animals, and the environment, which

has been piloted in six countries and is currently being

rolled out in additional countries (https://www.who.int/

initiatives/glass/glass-modules-7). In Europe, the Euro-

pean Antimicrobial Resistance Surveillance Network

(EARS-Net) coordinated by the European Centre for

Disease Prevention and Control collects, on a voluntary

basis, clinical AMR data from local laboratories, including

data on E. coli from blood and cerebrospinal fluid (https://

www.ecdc.europa.eu/en/about-us/

partnerships-and-networks/

disease-and-laboratory-networks/ears-net). In compari-

son monitoring of AMR E. coli from livestock and retail

meat samples are mandatory within the European union

[15]. This monitoring is harmonized by the European

Food Safety Authority (EFSA) and includes determining

resistance profiles of commensal E. coli isolates from

unselective screening, as well as selective screening for

ESBL-producing and AmpC producing E. coli, and car-

bapenem-resistant E. coli [16]. Several European agencies

also suggested that an EARS-Net in veterinary medicine

should be established and integrated with the other

monitoring systems. With the current EARS-Vet this

development is on its way [17��,59].

E. coli as an indicator of anthropogenic impact
on the environment
E. coli has long been a water quality indicator in the EU

Bathing Water Directive and is currently one of the

parameters to classify the quality of bathing waters, based

on systematic monitoring of E. coli throughout the recre-

ational season [18,19]. Similarly, E. coli are included in the

WHO guidance on recreational water for its specificity as

an indicator of faecal pollution from humans and warm-

blooded animals [20,21]. The reason for using E. coli as an

indicator is that it appears only at low background levels

in the environment but has high survival rates [22–24]. It

is also interesting to note that recent studies have shown

that AMR profiles of E. coli isolates from sewage samples

correlate to the E. coli AMR data from the associated

populations [25,26,27��]. AMR E. coli has also been

extensively described in different environmental depart-

ments including ESBL-producing and carbapenemase-

producing E. coli from wildlife and surface waters

[28�,29,30�]. Interestingly E. coli diversity appears to be

higher in surface waters compared to wastewaters, but

with AMR levels being higher in wastewater [27��].
Current Opinion in Microbiology 2021, 64:152–158 
Available methodology for E. coli
There are several ISO-standard methods for quantifica-

tion of E. coli in water based on membrane filtration or

most probable number techniques, but there are no

standardized methods for the quantification in other

environmental matrices, such as soils and sediments,

or for AMR E. coli [31,32]. However, standardized pro-

tocols for selective cultivation of AMR E. coli from

human and animal samples could be easily adapted to

environmental monitoring [33]. Culture-based methods

for quantifying and isolating E. coli are comparatively

inexpensive and simple to employ, ensuring their appli-

cability across high and low-income countries (LMIC)

that vary widely in laboratory capacity and technical

capability.

With respect to antibiotic sensitivity testing (AST) of E.
coli isolated from environmental samples, necessary data

and methods for AST are available through https://clsi.

org/ and https://eucast.org. For example, the EFSA AMR

monitoring protocol recommends the use of broth micro-

dilution, provides a list of antibiotics to be tested, and

uses the EUCAST epidemiological cut-off values

(ECOFFs) [34]. However, AST is limited in that the

underlying mechanism of resistance remains unknown,

but PCR and sequencings protocols for specifically rele-

vant genes and mutations are available.

Methods for characterization of E. coli are also available,

making it easy to compare environmental E. coli isolates

to human and animal isolates. For example, serotyping

using O-antigens and H-antigens has been a gold standard

for subtyping E. coli for epidemiological activities for

decades but has today largely been replaced with molec-

ular-based methods primarily multi-locus sequence type

(MLST) due to greater accuracy (https://pubmlst.org/

organisms). MLST is based on variations in seven

house-keeping genes and a large public MLST database

exists (https://enterobase.warwick.ac.uk/). E. coli range

from being a commensal to well-known pathogens, with

their Sequence Types (STs) reflecting this diversity.

Some STs, such as ST131, ST95 are associated with

human disease but are rarely detected in other compart-

ments/environments [57]. In contrast other STs, such as

ST10, are ubiquitous and have been reported from

human infections, animals and the environment [58].

With the expansion of whole-genome-sequencing

(WGS) almost the complete genome or only the core

genome, for example, genes present in all isolates, can

now also be used to define E. coli subtypes and a defined

core genome (cg) MLST scheme is already available in

Enterobase [35]. WGS provides a more accurate subtyp-

ing, due to significant variability in E. coli genomes, but it

is generally more time and cost consuming and needs

bioinformatics expertise. The cost and analyze require-

ments might also limit implementation by some LMICs.

It is currently proposed that WGS be incorporated into
www.sciencedirect.com
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EFSA monitoring by 2026, and GLASS is also preparing

WGS guidance documents [16,36].

In contrast to phenotyping and older molecular methods,

WGS yields far more information including the identifi-

cation of AMR genes (that are currently known), their

genetic context including co-linkage and association with

plasmids and other mobile genetic elements, and the

phylogenetic relationships between isolates [37]. For

example, traditional methods can only test for a handful

antibiotics at once while WGS data can be screened for all

known genetic determinants of AMR at once. Open-

access databases and software are already available for

this type of screening, and studies comparing E. coli WGS

genotyping, and phenotyping have shown good correla-

tions [38,39,40�]. WGS also enables detection of clones

and transmission of AMR plasmids, for example multi-

drug-resistant E. coli O25:H4-ST131 has been associated

with an ongoing global human pandemic and has been

shown to occur in the environment and animals [41–44].

Another important factor in using WGS to characterize E.
coli isolates is in the description and tracing of new genes

for example the mcr genes which confers resistance to the

last resort antibiotic colistin. After the first description of

mcr-1 in humans and livestock in 2015 in China, WGS and

available genome databases revealed the rapid global

expansion of the plasmid-borne gene in E. coli strains

and other hosts carried in food, domesticated animals,

wildlife, and various environmental compartments
Figure 1

Establ ish 

Cost effi ciency/
Ease of i mpl emen tation

Sensitivity

Curat ed

High-throughput
techno logy

Reproducib ility

Advantages of using E. coli as an indicator for AMR in the environment. Dif

usefulness in comparison to other indicators such as using quantitative PCR

different colours represent the different methods and the different grey shad

excellent/high.
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[45,46]. To date 10 different mcr genes, all of them

identified with the help of WGS, have been reported.

Limitations of using E. coli for environmental
surveillance
E. coli as an indicator species mainly provides a snapshot

of the environmental dimension of the faecal transmission

route. The evolutionary processes underlying the spread

and risk of AMR in the environment, with processes such

as novel resistance mechanisms, selection and mobiliza-

tion of pre-existing resistance determinants and horizon-

tal gene transfer are difficult to track using just E. coli. A

draw-back of using selective culture-based monitoring is

that differences exist in the methodology used at differ-

ent compartments making it difficult to compare between

compartments/countries [47]. Therefore, there is a need

to evaluate protocols for environmental monitoring and

deciding on quality controls measures. A limitation of

using culture is that throughputs generally are low, which

is not an extensive limitation when monitoring AMR E.
coli in infections, as usually only one pathogenic E. coli
strain is predominant. However, in the environment

where a multitude of diverse E. coli with different prop-

erties are present, proper sensitivity will be difficult to

capture when focusing on randomly collected E. coli
[27��,48]. In addition, there is a risk that only the most

abundant and prolific strains will be detected, exceeding

non-cultivatable or difficult to cultivate strains [24].

These problems are also shared with AMR monitoring
ed as indicator

Represent ativen ess

Detection of  mul ti-
drug resistance

da ta ava ilabil ity

Quantitative PCR

E. co li

Metagenomics

poor / low

intermed iate

excellen t / high
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ferent features are given which may be considered to measure its

 and metagenomics that can evaluate AMR in the environment. The

es indicate the suitability of the methods ranging from poor/low to
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of faecal carriage as several E. coli strains are simulta-

neously carried in human and animal guts [49]. The

sensitivity of detecting E. coli while however increase

when using selective cultivation for specific AMR phe-

notypes [51]. Different E. coli can also vary in environ-

mental fitness due to a variety of attributes and site-

specific circumstances, and some E. coli have their own

life cycles in the environment and naturalized strains

exist [24,52��]. Occurrence of E. coli in the environment

might also be impacted by faecal pollution from wildlife

[53,54]. Thus, at least in some environments, differentia-

tion between direct anthropogenic impact and ‘natural’

populations might be difficult to achieve when relying on

phenotype. Consequently, a need may exist to include

additional indicators of faecal pollution, for example,

crAssphage and Bacteroidales, to support interpretations

of E. coli based monitoring data [55��,56]. E. coli is also not

a suitable indicator of AMR in the natural microbiota,

where microbiome studies might be more appropriate.

Conclusions
There is an urgent need to implement AMR environ-

mental surveillance, and E. coli could be used as an

indicator both for specific resistance phenotypes as well

as more broadly looking at randomized isolates, thus

complementing surveillance in humans and livestock.

Using E. coli as an indicator for levels and anthropogenic

influences of AMR in the environment has some key

advantages compared to other methods (Figure 1): (i)

comparisons to data from human and animal sectors are

possible; (ii) analysis are relatively cost-effective; (iii) is

easy to implement; (iv) protocols are available; (v) it is an

established indicator of anthropogenic influences in the

environment; (vi) and currently cultivation based meth-

ods are the best method for detection and in-depth

analysis, including tracking transmission, of AMR E.
coli. To provide a deeper insight into AMR circulating

in the total bacterial community alternatives exists in

metagenomics or different qPCR techniques (Figure 1).

However, harmonized protocols and bioinformatic tools

are not readily available, the sensitivity, specificity and

reproducibility of the methods needs to be improved, also

it is currently not possible to use for detecting AMR

plasmids, and it is not feasible to implement globally,

especially in LMICs, in the near future. In contrast

national references laboratories already have the capabil-

ity of implementing AMR E. coli culture and can readily

extend it to environmental samples.
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