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ABSTRACT: Centroiding is one of the major approaches used for
size reduction of the data generated by high-resolution mass
spectrometry. During centroiding, performed either during
acquisition or as a pre-processing step, the mass profiles are
represented by a single value (i.e., the centroid). While being
effective in reducing the data size, centroiding also reduces the
level of information density present in the mass peak profile.
Moreover, each step of the centroiding process and their
consequences on the final results may not be completely clear.
Here, we present Cent2Prof, a package containing two algorithms
that enables the conversion of the centroided data to mass peak
profile data and vice versa. The centroiding algorithm uses the
resolution-based mass peak width parameter as the first guess and self-adjusts to fit the data. In addition to the m/z values, the
centroiding algorithm also generates the measured mass peak widths at half-height, which can be used during the feature detection
and identification. The mass peak profile prediction algorithm employs a random-forest model for the prediction of mass peak
widths, which is consequently used for mass profile reconstruction. The centroiding results were compared to the outputs of the
MZmine-implemented centroiding algorithm. Our algorithm resulted in rates of false detection ≤5% while the MZmine algorithm
resulted in 30% rate of false positive and 3% rate of false negative. The error in profile prediction was ≤56% independent of the mass,
ionization mode, and intensity, which was 6 times more accurate than the resolution-based estimated values.

■ INTRODUCTION
High-resolution mass spectrometry (HRMS) coupled with
either liquid or gas chromatography (LC/GC-HRMS) is one
of the main analytical tools for the comprehensive chemical
characterization of complex samples, from environmental to
biological (as reviewed elsewhere1,2). The generated datasets
are extremely information rich and are typically used for
structural elucidation of unknown chemicals as well as
fingerprinting or trend analysis.3−9 These techniques, while
being comprehensive with wide applications, generate large
amounts of complex data (up to 5 GB per sample). Therefore,
their processing becomes a challenging task, particularly when
dealing with unknown chemicals in highly complex sample
matrices.1,2,10,11

Centroiding is one of the main strategies employed prior to
feature detection for reduction of data size and information
density.12−14 During centroiding, the distribution of the mass
profile peak is represented with one point that is commonly
associated with the mass peak apex.12−14 This approach is
performed either on the fly (i.e., by the instrument during
acquisition) or as one of the steps in the data processing
workflow using vendor and/or open-source software.1,2,13,15

Centroiding could potentially reduce the size and information
density of the data by more than 10 folds. However, this comes
with a cost associated with the loss of information related to

the mass peak distribution, which provides valuable insight into
the mass accuracy and precision. Additionally, depending on
the centroiding strategy employed (i.e., on the fly or post
acquisition), access to the profile data may be limited. This
implies that the information related to the mass peak widths
may be lost during centroiding, independently from the
algorithm used. It is widely accepted that vendor software
packages are more accurate in performing centroiding due to
their access to instrument-specific information that is not
reported in the open format (e.g., mzXML) data files. To our
knowledge, there has not been a systematic evaluation of the
performance of different centroiding approaches and their
impact on data integrity.1 Moreover, none of the currently
existing open-access/source centroiding algorithms generate
the mass peak widths for the generated centroids.
There are different open-source/access algorithms for

processing (e.g., feature detection) of both profile and
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centroided data during non-targeted workflows.1,2,15 Some of
these data processing tools are specifically designed to handle
the profile data16,17 while others can only process the
centroided data.18,19 Most of these algorithms employ a set
of user defined (i.e., applied to all peaks) parameters such as
mass tolerance. These mass tolerances are used as a means to
group the signals that belong to the same chemical
constituents, for example, all the measured points of a
chromatographic feature in both time and mass domains.16,18

This implies that such parameters are dependent on the
distribution of the measured m/z values in the mass domain
and thus the mass peak width. However, previous studies have
shown that such parameter setting strategies may cause a high
level of uncertainty in the final outcome, particularly for
complex samples with a wide variety of chemicals and
concentration levels.20−22 This is typically translated into
reproducibility issues both for hypothesis testing and
identification of unknown chemicals of interest.11,23,24

Recent studies on feature detection of profile data have
shown higher levels of reproducibility and reliability as
compared to the centroid data.16,25,26 The observed higher
levels of reliability have been associated with the algorithm
access to the information related to the peaks in both the time
and mass domains. Additionally, the same information can be
utilized during spectral deconvolution and feature identifica-
tion to set feature specific mass and time tolerances.1,27 Most
of the currently existing centroiding algorithms do not produce
such information (i.e., mass peak width), and there is no
algorithm that can estimate the peak mass widths from the
centroided data.
Here, we report the development and validation of the

Cent2Prof package developed in julia language28 for seamless
conversion of centroided data to profile data and vice versa.

The algorithms in Cent2Prof were tested and validated using
seven previously analyzed datasets produced by three different
vendors in both positive and negative modes. The algorithms
consist of a self-adjusting centroiding algorithm, a random
forest model for prediction of mass peak width, and a mass
profile prediction algorithm. Cent2Prof enables the conversion
of profile and centroided data in both directions. The
centroiding algorithm was compared to an existing algorithm
implemented via MZmine, whereas for profile prediction, the
difference between the measured and predicted profiles was
used as a means for performance evaluation.

■ METHODS

Overall Workflow. To develop, validate, and test these
algorithms, we followed three steps consisting of (1) centroid
calculations, (2) developing a model for the prediction of mass
peak widths, and finally (3) predicting the mass profiles using
the model and centroids, Figure 1. All the steps are explained
in detail below.

Chromatograms. Previously acquired data of complex
samples were used for the algorithm development, validation,
and testing. The data consisted of 30,000 MS1 scans between
the m/z values of 50 and 1200 Da generated with quadrupole
time of flight (QToF) instruments using electrospray
ionization (ESI) sources. These scans belonged to seven LC-
HRMS runs, four in positive mode and three in negative mode.
Additionally, the data were generated by three different
instruments/vendors (i.e., two Sciex, three Waters, and two
Agilent) using different experimental conditions (Section S1 of
the Supporting Information). Finally, all samples consisted of
complex sample matrices ranging from surface water extracts to
biosolid extracts. More details regarding the type of samples

Figure 1. All the steps taken from the raw data to profile prediction.
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and experimental conditions are provided elsewhere3,16,29−31

and in the Supporting Information S1.
Data. Prior to data processing, all chromatograms were

converted to the mzXML format32 using ProteoWizard
software package version 3, 64 bit.33 The mzXML files were
then imported into julia programing language using
MS_Import.jl package (see Code Availability). Peaks in the
mass domain were extracted from these scans to generate the
dataset used consisting of 2.7 × 1011 m/z values, intensities,
retention factors,34,35 and mass peak width at half-height. The
first three parameters were used as independent variables (i.e.,
predictors) while the fourth was used as a dependent variable
(i.e., to be predicted). For the extraction of this information,
we developed a self-adjusting centroiding algorithm (details are
provided below). The centroiding algorithm uses input
parameters of the raw data, nominal resolution, signal to
background ratio, minimum intensity threshold, and R2

threshold to assess the goodness of fit for a Gaussian
distribution (details are provided in Section S2 of the
Supporting Information).
For the data pre-processing, the intensity of each peak was

divided by the maximum signal of that scan, which resulted
into unit scaling of the intensities. This pre-processing step
minimized instrument and sample-dependent variance ob-
served in the data. After pre-processing, the data was divided
into training, validation, and test sets. The training and
validation sets consisted of the data coming from 28,000 scans,
which was divided in ratios of 70 and 30%, respectively
(selected at random). On the other hand, the test set was used
for the assessment of the generated model as well as for the
profile14 prediction.
Self-Adjusting Centroiding Algorithm. The centroiding

process includes five steps consisting of signal selection,
smoothing, Gaussian fit, calculating the centroid, and signal
removal (Figure S3). A detailed explanation of each step
follows below.
Signal Selection. The centroiding algorithm starts with the

most intense signal in each scan. After locating the maximum
signal (i.e., apex of a mass peak), the algorithm employs the
user-provided nominal resolution to estimate the mass peak
width. The algorithm isolates a mass window two times the
estimated window based on the first guess. In the next step, the
algorithm follows the measured signal from the apex until
either reaching the half-height intensity or the minimum
intensity threshold set by the user.
Smoothing. The selected signal is then smoothed using a

simple moving-average filter with a window size of 3 points,
which guarantees the removal of the instrument associated
signal fluctuations without altering the analytical signal.36

Gaussian Fit. The smoothed signal is used to calculate the
mass window (“c”), m/z value (“b”), and the intensity (“a”)
that are used for the Gaussian fit, eq 1, which previously has
been shown to be adequate in predicting the mass peak
profiles.16,37 The algorithm fits a three parameter Gaussian to
the smoothed signal and compares the generated adjusted R2

to the threshold set by the user, eq 1. In the case where the
calculated R2 is ≥ the set threshold, the fit is considered
successful and the signal is assumed to be a real peak.

i
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Calculating the Centroid. To calculate the mass of the
centroid, the algorithm uses the average of the estimated
centroid mass using the fitted Gaussian and the apex of the
measured signal. Before accepting the average value as the
centroid, the algorithm calculates the difference between the
m/z value of the measured and Gaussian predicted apex. If the
difference is smaller than half of the measured mass peak width
at half height, then the algorithm accepts the average value as
the true centroid. This approach was employed as a filtering
strategy for distinction of the true signal from the noise while
providing a more accurate estimate of the centroid.
Consequently, the signals that generate a successful Gaussian
fit and meet this requirement were considered as true positives
while signals that did not produce an acceptable fit or did not
meet the above-mentioned criterion were considered true
negative (i.e., noise). At this point, the calculated centroid and
the maximum intensity are recorded.

Signal Removal. The algorithm follows the measured
intensity until it reaches the minimum intensity threshold set
by the user. All the measured signals within this interval is set
to half of the user defined intensity threshold, which enables
the algorithm to move to the next most intense mass peak in
the scan.
The algorithm repeats the above mentioned steps in an

iterative approach until no signal above the user defined
threshold is present in the data. For the performance
assessment of the centroiding algorithm, we used MZmine
due to the fact that the algorithms deployed within this
software represent a suite of the most commonly used data
processing tools. Moreover, our dataset included data acquired
by three different vendors which hinder the possibility of direct
comparison. Finally, the lack of knowledge regarding the used
algorithms in the vendor products makes the direct
comparison impossible. The detailed list of parameters and
their selected values are reported in Table S2 of the Supporting
Information. It should be noted that these parameters were
employed for all chromatograms independently from their
matrix and/or vendor.

Modeling. For modeling, a random forest regression38

(RFR) strategy implemented in julia language v 1.5.328

(package DecisionTree.jl v. 0.10.10) was employed. The
model utilized the m/z values, relative intensities, and the
retention factors to predict the mass peak widths at half height.
The model was initialized with 100 trees and minimum
number of data in a leaf of 30. This model then went through
an optimization procedure where a new model was built by
varying each of the parameters at a time. The number of trees
varied between 50 and 350 with steps of 50, whereas the
minimum number of data points in the leaves varied between 1
and 30 with steps of 5. This resulted in a two-dimensional grid
which was used to find the optimized model setting. The
quality of each model was evaluated by monitoring the root
mean square error of prediction as well as the correlation
coefficient between the measured and predicted values, when
applying the model to the validation set (i.e., the portion of
data unseen by the model).38 This strategy resulted in a final/
optimized model with 250 trees and minimum leaf population
of 10, which enabled the prediction of mass peak width via
relative retention time, m/z value, and the relative intensity. It
should be noted that this model used all three variables and
only had access to the training set.
The optimized model was further validated, using an out-of-

bag strategy including 500 bootstrapping samples as well as
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five-fold cross validation.38,39 These two approaches enabled
the mitigation of overfitting while resulting in a robust and
reliable model.
Profile Prediction. During profile prediction, a mass

window of twice the size of the predicted peak width,
consisting of 8 points, was used for profile generation. The
number of points for the full mass profile prediction were
selected based on the median number of points detected in the
experimental mass profiles. On the other hand, the size of the
mass window was selected to compensate for the fact that the
predicted peak widths were associated to the half height of the
peak and not the full profile. The combination of the predicted
mass window (“c”), measured m/z value (“b”), and measured
intensity (“a”) provided the necessary information to estimate
the profile of mass peaks, thus moving from the centroided
data to profile data.
Calculations. All calculations were performed using a

personal computer (PC) with Intel Core i7 CPU and 16 GB of
RAM operating Ubuntu 20.04.2 LTS. All the data processing
and statistical analysis were performed using julia language
1.5.3.

■ RESULTS AND DISCUSSION
Seven chromatograms consisting of 30,000 scans were
employed for the model development, validation, and final
testing. The signals within these scans were centroided
resulting in 2.7 × 1011 measurements of the mass peak widths

at half-height, relative intensity (%), the mass (Da), and the
retention factor (%). The latter three parameters were used for
prediction of the first parameter via a random forest regression
model. Additionally, an algorithm for prediction of mass peak
profiles based on the developed model was developed.

Performance of the Centroiding Algorithm. The
centroiding algorithm is self-adjusting and iterative, where for
each iteration, one mass profile peak was converted to a
centroid. During this process, the algorithm used the nominal
resolution of the instrument as a first guess to estimate the
mass peak width. This mass window was adjusted to the true
values using the measured data. Prior to the application of the
centroiding algorithm, all its parameters were optimized using
50 randomly selected mass peaks in two chromatograms.
Moreover, these parameters, when optimized, were in close
agreement with the parameters optimized for the self-adjusting
feature detection algorithm.16

The visual inspection of the output of the centroiding
algorithm for one chromatogram resulted in around 8000
correctly detected centroid masses (Figure S2), zero false
positive identifications (i.e., noise being detected as signal),
and 167 false negative identifications (i.e., true signal being
identified as noise) (Figure S3). This process was performed
by plotting every single mass peak processed via the algorithm,
which resulted in a total of around 11,000 figures (please see
Code Availability), including true positives (Figure S2), false
negatives (Figure S3), and true negatives (Figure S4). The

Figure 2. Distribution of 100,000 randomly selected measured mass peak widths (mDa) as a function of (a) relative intensity (%), (b) the m/z
value (Da), and (c) the retention factor (%). The red points were measured in the negative mode(i.e., ESI−) while the blue points were measured
in the positive mode(i.e., ESI+).
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same chromatogram was processed via the centroiding
algorithm implemented in the MZmine213 utilizing the same
minimum intensity threshold (i.e., 1000 c/s). The direct
comparison between the outputs of the two algorithms enabled
us to assess the false detection rates of the MZmine2 method.
The MZmine2 algorithm resulted in larger rates of false
positive 35% while having false negative rates as low as 3%
(Figure S5). Overall, our algorithm resulted in both false
positive and false negative rates ≤5%, which is smaller than the
MZmine213 centroiding algorithm for false positives and is
comparable for the rate of false negatives (i.e., a false positive
rate of 35% and a false negative rate of 3%).
We also evaluated the impact of the R2 threshold and the

signal to background ratio parameters on the rates of false
detection. A list of 100 randomly selected mass peaks
generated under optimized conditions was used as our
reference. The same 100 peaks were reevaluated using a grid
with a resolution of ten (i.e., ten steps) generated for each
parameter. The R2 threshold ranged between 0 and 1 while the
signal to background ratio ranged between 0 and 5. The
detected peaks were compared to the reference list to assess
the number of false detection cases (i.e., sum of false positive
and negative cases). For R2 values of ≥0.9, the algorithm
resulted in false detection cases ranging between 60 and 98
cases out of total evaluated 100 peaks, which was attributed to
the extreme case scenario (i.e., perfect Gaussian fit) (Figure

S6). On the other hand, for signal to background ratios >2.5,
the algorithm generated up to 100 cases of false detection out
of the 100 evaluated peaks (Figure S6), which was attributed
to the fact that the mass peaks rarely meet this criterion. Expect
for extreme cases, the algorithm appeared to be robust toward
changes in these parameters. In fact, for R2 threshold set
between 0.5 and 0.85 and signal to background ratio range of
1−2.5, the observed changes in the number of false detections
were not statistically significant (Kruskal−Wallis test40 p ≤
0.01) (Figure S6).
The self-adjusting centroiding algorithm fared comparably in

terms of the false negative rate to MZmine2 with the same
parameter setting, while performing better in terms of the false
positive rate. Moreover, the algorithm appeared to be robust in
terms of the changes in the parameter settings. Finally, the
algorithm generates a mass peak width for each centroided m/z
value, which can be used during feature detection, componen-
tization, and identification.

Exploration of the Model Parameter Space. The
centroiding algorithm employing optimized settings was used
to generate the necessary parameters for the model building.
Three parameters consisting of relative intensity (%), mass
(Da), and the retention factor (%) were employed for the
prediction of mass peak widths at half-heights via a random
forest regression model. These parameters were selected based
on the fact that they could be extracted automatically from the

Figure 3. (a) Distribution of 10,000 randomly selected measured mass peak widths (mDa) from the test set vs the predicted mass peak widths and
(b) the distribution of the prediction errors in mDa. The red points were measured in the negative mode(i.e. ESI−) while the blue points were
measured in the positive mode(i.e. ESI+).
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raw data, given their importance in prediction of mass peak
widths.1,14,41

The measured mass peak widths of the 2.7 × 1011 profiles
ranged from 3 to 80 mDa. More than 95% of the data used for
our model had a mass peak width ranging between 3 and 20
mDa, regardless of the relative intensity or the ionization mode
(i.e., ESI− or ESI+) (Figure 2). This was in agreement with
previously reported mass accuracies related to QToF instru-
ments with a nominal mass resolution of 35,000.4,16,27,41,42 We
did not observe a statistically significant (i.e., p ≤ 0.05) linear
correlation between the relative intensity and the measured
peak widths (r = 0.06),43 which indicates that there is no direct
relationship between these two parameters.
An increase in the measured masses showed a slight increase

in the measured peak widths with an r value of 0.46 (p ≤ 0.05)
(Figure 2). In this case also, the observed correlation was
independent from the analysis mode (i.e., ESI− or ESI+). The
observed correlation between these two parameters is in
agreement with the nominal mass resolution and the set
sampling rate of QToF instruments.1,14 The observed
correlation, even though significant, indicates that the m/z
value alone is not able to describe the variance in the measured
peak widths.
As with the relative intensity, the retention factor did not

show a statistically significant correlation with the measured
peak widths (r = 0.1) (Figure 2). The observed trend indicated
that the location of the peak in the chromatogram did not
impact the mass peak width, suggesting the negligible impact
of ion suppression on the mass accuracy.1,14

Overall, for all three parameters, the ionization mode did not
affect the measured mass peak widths (Figure 2). Moreover,
the observed weak relationship between the independent and
dependent variables suggested that the conventional ap-
proaches such as principal component regression and/or
partial least square regression may not be able to capture the

observed variance in the measured mass peak widths, given
their needs for the presence of correlation between the
dependent and independent variables. Therefore, the use of a
more sophisticated modeling strategy is warranted.

Modeling. A regression model was developed and validated
for the prediction of m/z peak widths at half-height, based on
relative intensity (%), the mass (Da), and the retention factor
(%) via a random forest modeling strategy. To assess the
importance of each parameter, a model was generated
including only one independent variable of the training set.
Each model was then used for the prediction of the mass peak
widths of the test set. The percentage variance explained in the
predictions compared to the experimental data was used as a
measure of variable importance.38

The model with all three variables described ≈85% of
variance in the test sets, whereas the individual variables
descriptive power ranged from ≈46% for the m/z value to
≈6% for the retention factor (Figures S7−S9). Given that none
of the variables generated an explained variance ≤5%, we
opted for the inclusion of all three variables in the model to be
able to predict the mass peak widths with a higher level of
accuracy. Moreover, we used the standard error of prediction,
defined as the error divided by the measured values, as a means
of assessing the quality and accuracy of the model outputs. The
inclusion of all three parameters resulted in a statistically
significant decrease in the average prediction error from 139
(Figures S10 and S11) to 56%, which further indicated the
importance of all three parameters (Figures S7−S9).
The final model resulted in an average prediction error of ±6

mDa (56%), for ≈90% of the test set (Figure 3). The largest
prediction errors of up to 200% were observed for the peak
widths between 8 and 15 mDa. On the other hand, for peak
widths ≤8 and ≥15 mDa, the average observed prediction
error was around 47%. Moreover, for peak widths ≥35 mDa,
the model appeared to consistently underestimate the

Figure 4. Examples of the (a) the predicted profile of an m/z value profile at scan 1400 based on the centroided data and (b) the measured and
predicted TICs of a wastewater influent sample. These plots show case the ability of the developed algorithms to predict the mass profiles of the
centroided data using relative intensity, m/z value, and the retention factor.
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measured peak widths. However, even in this case, the average
prediction error did not exceed 50%. We also compared the
model average prediction error to the estimates of mass peak
widths using the constant resolution and the accurate mass.
The average prediction error of 56% via model was 6 times
smaller than the average error of the resolution-based
estimates.
Overall, the developed and validated model was able to

predict the mass peak width using parameters directly
extracted from the raw data with an average prediction error
of 56%. The random distribution of error across all mass peak
widths further suggested that a lack of systematic error as well
as overfitting in the final model. To our knowledge, this is the
first study predicting the mass peak width for HRMS data.
Profile Prediction. The mass, absolute intensity, and

predicted mass peak width were used for predicting the profile
of a centroid. We evaluated the profile prediction algorithm
using the output of the centroiding algorithm, which consisted
of two arrays of centroided m/z values and intensities.
Based on 25,000 randomly selected centroided m/z values

from all seven samples, the standard error of profile prediction
ranged between 7.5 and 29.5%, independent of the ionization
mode, mass, intensity, and sample matrix (Figure 4). To assess
the error of the profile prediction, we calculated the difference
between the predicted profiles and the measured profiles for a
chromatogram from an untreated wastewater influent sample.
Additionally, we visually inspected all 7 TICs and 100
randomly selected predicted profiles to further assess the
observed standard errors of prediction. Except for six cases
where the absolute intensities (i.e., 1200 c/s) were close to the
minimum intensity threshold of 1000 c/s (i.e., average 0.01%
relative intensity), all remaining 94 cases resulted in a
successful profile prediction. A successful profile prediction
was defined as cases where the predicted profiles have a
prediction error ≤ the model prediction error (i.e., 56%). The
profile prediction appeared to be more effective (i.e., smaller
prediction errors) closer to the apex while deviating from the
measured profile between the half height and the baseline
(Figure 4). This was in agreement with the fact that the m/z
profiles are generally better explained by the Gaussian function
above the half height and that there is lower levels of signal
fluctuations (e.g., noise and/or shadow peaks14) close to the
apex (Figure 4a).
When generating the total ion currents (TICs), based on the

predicted profiles, we observed a 32% increase (i.e., total
observed error of 62%) in the deviation observed between the
signals (i.e., measured vs predicted TICs) (Figures 4, S12 and
S13). We identified two main sources for the observed
discrepancies, namely, the signals below the set intensity
threshold (Figure S12) and the number of points present in
the measured mass peaks versus the limited number of points
in the predicted profiles (Figure 4a). The deviation caused by
the number of the points appeared to be 5 times larger than
the fraction caused by the signals below the threshold, based
on the 100 randomly selected profiles. This was assessed by
calculating the difference between the sum of the points (i.e.,
intensities) in measured versus predicted profiles. When
looking at the number of points in the measured profiles,
they vary between 4, for low intensity signals, and 35 points,
for higher intensity ones with an average of 8 points over the
seven chromatograms. For the signals below the threshold,
regions of high noise (e.g., around scan 1500, Figure 4b) were
impacted more than lower noise areas of the chromatogram

due to the higher density of signals below the threshold in
those regions.
Overall, the profile prediction algorithm was successful in

generating profile data based on the centroided data and the
previously developed and validated model. This algorithm
enables seamless conversion between the centroided and
profile data for LC-HRMS data acquired with a QToF mass
analyzers.

■ CONCLUSIONS
The presented algorithms, for the first time, enable the
processing of the centroided and profile data by algorithms
which only accept one or another (e.g., SAFD16 for profile and
XCMS18,19 for centroided). Current version of the algorithm is
implemented in SAFD16 as well enabling the processing of
both centroid and profile data. Additionally, one of the outputs
of the centroiding algorithm is the mass peak width at half-
height, which can be used during data processing workflows
(e.g., region of interest detection,18 XIC-based feature
detection algorithms,44 and setting of mass accuracies for
feature identification27,45). However, a recent study has
highlighted the potential of the XIC-based feature detection
approaches for these techniques.46 Thus, the presented
algorithms, additionally, enable detailed (i.e., XIC based)
feature detection in the dataset generated by higher dimension
instruments such as comprehensive two-dimensional chroma-
tography coupled with HRMS, which as of today rely on TIC
level feature detection due to data complexity.37,47 All the
algorithms are developed in an open source and open access
manner and consequently are vendor-independent.
The current model, available for use with the Cent2Profile

and SAFD.jl packages, is based on QToF data, which limits the
application of the algorithm for orbitrap data. For the orbitrap
data, an additional model is needed and will be the topic of our
future work. Additionally, the impact of the profile prediction
on the feature integration has not been evaluated and will be
the subject of future studies. However, it should be noted that
the algorithm maintains the measured peak intensity. Finally,
the current version of the algorithm requires around 16 min for
a chromatogram consisting of around 2000 scans, which could
be improved by further optimization of the algorithms..
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