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Abstract: Aquatic plant nutrient concentrations provide important information to characterise their
role in nutrient retention and turnover in aquatic ecosystems. While large standing biomass of aquatic
plants is typically found in nutrient-rich localities, it may also occur in oligotrophic ecosystems.
Juncus bulbosus is able to form massive stands even in very nutrient-dilute waters. Here we show that
this may be achieved by tissues with very high carbon-to-nutrient ratios combined with perennial
(slow) growth and a poor food source for grazers inferred from plant stoichiometry and tissue
nutrient thresholds. We also show that the C, N, P and C:N:P stoichiometric ratios of Juncus bulbosus
vary with the time of year, habitats (lakes versus rivers) and organs (roots versus shoots). We found no
differences between growth forms (notably in P, inferred as the most limiting nutrient) corresponding
to small and large plant stands. The mass development of J. bulbosus requires C, N and P, whatever
the ecosystem (lake or river), and not just CO2 and NH4, as suggested in previous studies. Since
macrophytes inhabiting oligotrophic aquatic ecosystems are dominated by isoetids (perennial plants
with a high root/shoot ratio), attention should be paid to quantifying the role of roots in aquatic
plant stoichiometry, nutrient turnover and nutrient retention.
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1. Introduction

Aquatic plants tend to have higher N and P and lower C:N and C:P ratios than terres-
trial plants [1,2]. This generally corresponds to higher growth rates and decomposition
rates, as well as higher herbivory [1–3]. Standing biomasses of freshwater macrophyte
meadows are equivalent to those of grassland ecosystems [1]; hence, aquatic plants can
actively contribute to nutrient cycling [4–6], as well as through the uptake, retention
and release of nutrients from the sediment to the water column via decomposition and
herbivory [7,8].

The role of aquatic plants in nutrient net retention may be very modest relative to
external loading in nutrient-rich ecosystems. For example, studies on British calcareous
lowland rivers impacted by agriculture and point-source effluents, bearing high standing
biomass [9], reported very small plant nutrient retention relative to total flux: less than 1 to
2.5% for P [10–12] and 0.2 to 2% for N [10,11]. Slightly higher retention rates by aquatic
plants (up to 10–13% of the dissolved inorganic N river flux during the summer) were
reported in a lowland river in the Netherlands [13]. Large standing biomass of aquatic
plants is also known from oligotrophic aquatic ecosystems [14–16], where aquatic plant
nutrient retention may be more significant [7,16].

Aquatic plant nutrient retention is often determined for the shoot without the roots,
but in nutrient-poor aquatic ecosystems, aquatic plants tend to be dominated by isoetids

Plants 2021, 10, 441. https://doi.org/10.3390/plants10030441 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-0154-7847
https://doi.org/10.3390/plants10030441
https://doi.org/10.3390/plants10030441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10030441
https://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/10/3/441?type=check_update&version=1


Plants 2021, 10, 441 2 of 12

characterised by high root/shoot ratios [17]. There were more differences between roots
and shoots for N than P concentrations in Lobelia dortmanna, especially during the summer,
with larger N concentrations in shoots than roots [18]. Relative differences in N and P
between roots and shoots can be driven by light and nutrient availability [19–21]. In north-
west Europe, few aquatic plant species grow to form large submerged stands (1–3 m tall) in
oligotrophic ecosystems, and among those species, Juncus bulbosus is the only (facultative)
perennial type, also playing an important role in ecosystem structure and functions [22].
Since J. bulbosus is also widely distributed in northern Europe [23], it makes it an important
species to study.

In southern Norway, the mass development of Juncus bulbosus occurs in lakes and
rivers (with up to 500–1100 g dry mass m−2 [24,25]), despite extremely low nutrient
concentrations [26,27]. J. bulbosus can have a high root/shoot ratio in flowing water
(1.5 ± 0.5, based on dry mass m−2, Demars, unpublished), and so root nutrient retention
should not be overlooked [28]. A detailed study on Norwegian lakes identified several
local- and catchment-scale drivers of J. bulbosus tissue stoichiometry [26]. Some patterns
in the tissue C, N, P concentrations and C:N:P stoichiometry of J. bulbosus in Norwegian
lakes and rivers were identified [27] using averaged plant data from different years and
analysed in different ways (entire plant versus shoot). Thus, it remains to directly test for
more specific sources of variability such as seasons, growth forms, organs and habitats.

We aimed to characterise Juncus bulbosus tissue nutrient concentrations and stoichiom-
etry in southern Norway, an important step towards characterising the potential role of
macrophytes in nutrient retention in oligotrophic aquatic ecosystems. Here we set out
to (i) test whether Juncus bulbosus C, N, P and C:N:P in lakes can be related to growth
forms (abundance) and the time of year; (ii) test for differences in Juncus bulbosus elemen-
tal concentrations and stoichiometry between habitats (lakes versus rivers), plant organs
(roots versus shoots) and habitats × plant organs; and (iii) assess the likelihood of nutrient
limitation for yield (standing biomass) using a comparative approach [26].

2. Results
2.1. Growth Forms and the Time of Year

C, N, P (46± 2, 1.7± 0.2, 0.16± 0.08%) and C:N:P (1073:31:1) in Juncus bulbosus varied
greatly and significantly between the six lakes surveyed in 2006. There were, however,
no significant differences in C, N, P and C:N:P between large growth forms and rosette
leaves or new shoots. The effect of growth form on N concentrations in plant tissue (close
to significance after correction for multiple testing) explained 9.3% of the variance, whereas
the full mixed-effects model (including random effects) explained 34% of the variance. This
was mostly due to differences (median) in N tissue concentrations in the large growth form
(June: 2.2%, October: 2.6%) versus rosette (June: 2.6%, October: 2.8%). The effect of the time
of sampling (June versus October) on P concentrations in plant tissue explained 14% of the
variance, and the full model explained 49% of the variance. The median P concentration
was lower in October (0.09%) than in June (0.13%), and correspondingly, the C:P and N:P
were higher: C:P = 1332 versus 954; N:P = 61 versus 45, respectively (Table 1).

Table 1. Mixed-effects model to test the effects of the time of sampling (spring versus autumn) and
growth forms (rosette, large growth form, new shoots) in Juncus bulbosus. Data from 2006 (see
Methods). Bonferroni correction for multiple testing α = 0.05/12 = 0.004.

Time of Sampling Growth Form

χ2
1 P χ2

1 P
C 0.2 0.68 1.8 1.41
N 2.3 0.13 9.9 0.007
P 20.1 7 × 10−6 1.5 0.47

C:N 1.9 0.17 8.1 0.02
C:P 20.2 7 × 10−6 1.2 0.55
N:P 33.1 9 × 10−9 7.2 0.03
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C, N, P (46 ± 2, 1.7 ± 0.3, 0.18 ± 0.09%) and C:N:P (843:26:1) in Juncus bulbosus were
also very variable in the ten lakes surveyed in summer 2008. Neither growth form nor the
time of sampling (June versus September) could explain the variability in C, N, P or C:N:P
(Table 2).

Table 2. Mixed-effects model to test the effects of the time of sampling (early versus late summer)
and growth forms (rosette, large growth form, new shoots) in Juncus bulbosus. Data from 2008 (see
Methods). Bonferroni correction for multiple testing α = 0.05/12 = 0.004.

Time of Sampling Growth Form

χ2
1 P χ2

1 P
C 0.03 0.87 2.1 0.15
N 1.1 0.29 0.7 0.41
P 0.1 0.77 0.7 0.39

C:N 1.1 0.30 1.7 0.20
C:P 0.1 0.78 0.4 0.51
N:P 0.4 0.51 1.3 0.25

2.2. Plant Organs (Roots versus Shoots) and Habitats (Lakes versus Rivers)

We first checked for differences in environmental conditions. The 16 lakes and 28 river
sites sampled for this purpose differed in this context. The lakes had higher total N
concentrations (median: 300 versus 230 µg N L−1, F = 19, P = 4 × 10−5), a higher sediment
organic matter content (18 versus 2%, F = 22, P = 1 × 10−5), a higher proportion of sediment
pore water (76 versus 36%, F = 28, P = 1×10−6) and higher electric conductivity (32 versus
16 µS cm−1, F = 41, P = 1 × 10−10). There were no differences in inorganic N or P
concentrations either from the sediment or the water column between lakes and rivers.

C tissue concentration was similar across organs and habitats (Figure 1). The roots
had a lower N concentration (F = 86, P= 4 × 10−14) and lower P concentration (F = 13,
P = 0.0006) than the shoots. N tissue concentration was higher in the rivers than the lakes
(F = 20, P = 2 × 10−5) and similarly for P, although not statistically significant. C:N and
C:P reflected N and P, but N:P was similar across organs and habitats. There were no sig-
nificant interactions between organs and habitats. The average shoot concentrations were
1.76 versus 2.40% for N and 0.12 versus 0.16% for P in lakes versus rivers, respectively. The
average shoot C:N:P ratios were 1091:35:1 versus 824:38:1 in lakes versus rivers, respectively.
Multivariate analyses identified organs (shoot versus root) as the main factor able to explain
the variance in plant tissue concentrations and stoichiometry, together with habitats (lake
versus river), total P and electric conductivity, independently of the way missing data were
handled (Table 3). The forward selection of these significant factors produced a highly
significant (P < 0.001) model with an adjR2 of 30% (Table 3).

Table 3. Percentage of variance in plant nutrient concentrations (C, N, P) and stoichiometry (C:N:P)
explained by organs (root versus shoot), habitats (lake versus river) and environmental variables
(water and sediment chemistry) using redundancy analyses: singly and after stepwise selection. Only
significant explanatory variables are shown. n = 80, missing data were replaced by averages across
all samples. TP = total P, EC = electric conductivity.

Percentage of Explained Variance

Singly P
After

Stepwise
Regression

P Selection
Order

Organs 20.8 <0.001 20.8 <0.001 1
Habitats 4.6 0.004 4.1 0.028 3

TP 4.6 0.006 3.9 0.040 4
lnEC 3.0 0.027 4.3 0.019 2
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Figure 1. Differences in the element concentrations and stoichiometry of Juncus bulbosus between organs (roots and shoots)
and habitats (lakes and rivers)—summer 2010 (Table 4).

Table 4. Juncus bulbosus C, N, P tissue concentrations from southern Norway. n = number of samples.

Datasets Year Description

6 lakes 2006 Replicate J. bulbosus sampling of different growth forms
in 6 lakes at two seasons (spring and autumn), n = 86

10 lakes 2008
Single J. bulbosus samples (roots and shoots together),
two sampling times (early and late summer) and two

growth forms, n = 40

16 lakes and
28 river sites 2010 Single J. bulbosus samples, two habitats (lakes and rivers)

and two organs (roots versus shoots), n = 80

3. Discussion

Overall, there were little or no differences in plant element concentrations and stoi-
chiometry between growth forms (2006 and 2008 surveys), similarly to between small and
large plant stands [27], likely because the plant growth rate was nutrient limited, and the
N:P molar ratio was relatively strict [26]. The possible difference in N concentrations (2006
survey only) between growth forms may be due to unbalanced P limitation leading to N
“luxury consumption” (Figure 2a).
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of the mean, grey shade) nutrient N (1.4 ± 0.25), P (0.14 ± 0.03) and N:P (23.4± 3.3) critical thresh-
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between species and elements [29–32]. In Lobelia dortmanna (an isoetid), N accumulation 
occurred under low light availability and slow growth in the autumn for possible use in 
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Figure 2. Tissue nutrient concentrations (% dry weight) from the shoots of Juncus bulbosus in (a) six
lakes (n = 86) surveyed in spring (circles) and autumn (triangles) 2006 and (b) 16 lakes (circles) and
28 river sites (squares) surveyed in summer 2010. Results plotted against average (±standard error of
the mean, grey shade) nutrient N (1.4 ± 0.25), P (0.14 ± 0.03) and N:P (23.4 ± 3.3) critical thresholds
for maximum yield determined for hydrophytes from a literature review of laboratory assays [26].

There were no temporal differences in C, N, P and C:N:P between samples collected
in early versus late summer (2008 survey) but large differences in P, C:P and N:P ratios
between samples collected in late spring versus autumn (2006 survey). Such seasonal shifts
in plant stoichiometry have been reported before for other species and are known to vary
between species and elements [29–32]. In Lobelia dortmanna (an isoetid), N accumulation
occurred under low light availability and slow growth in the autumn for possible use in
the following spring and summer growth spurt [18].

The most imbalanced stoichiometry was from samples collected in autumn when the
plants had much higher N relative to P, likely indicative of a period with slow growth,
indicated by the nutrient thresholds derived from laboratory bioassays (Figure 2a [18,26]).
Juncus bulbosus had a lower N tissue concentration in lakes than rivers in southern Nor-
way (2010 survey) despite similar external inorganic nutrient concentrations (water and
sediment). This may reflect the higher supply rate of nutrients in rivers compared to
lakes, especially the more limiting factor P, with most samples below the critical N:P ratio
(Figure 2b). Phosphorus limitation may also be more pronounced in lakes than rivers due
to a higher organic matter content in lake than river sediments (18% versus 2%, respectively),
potentially triggering root iron plaque formation and preventing P uptake, as for other
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isoetids [33]. The difference between habitats (standing versus flowing water) was much
more pronounced than in a previous study, where the effects were largely masked by plant
life forms and biophysical zones [34]. This said species evolved in different environments,
and their response to contrasting habitats such as current velocity [29] or lotic versus lentic
habitats [28] is known to differ.

The higher nutrient concentration in shoots compared to roots can be explained by
the high N concentrations abundant in chlorophyll and Rubisco (the enzyme-fixing CO2)
in the leaf, as well as the energetic requirements associated with photosynthesis, requiring
a high concentration of the P-rich adenosine 5′-triphosphate (ATP) [35].

The average P concentrations in the shoots of Juncus bulbosus (0.12% in lakes and 0.16% in
rivers) in summer 2010 in Norway were generally lower than Juncus bulbosus and associated
species recorded in Scotland (Juncus bulbosus P = 0.22% and molar C:P = 639—Figure 3 [14]) but
comparable to some species in Spanish oligotrophic lakes (e.g., Potamogeton natans P = 0.12%
and molar C:P = 965; Littorella uniflora P = 0.12% and C:P = 861; Juncus heterophyllus P = 0.09%
and C:P = 1218—Figure 3 [36]). These average concentrations suggested no limitations for
maximum yield (critical threshold: P = 0.14%, Figure 3) but limitations for maximum growth
rates (critical threshold: P = 0.22% [26]). These low P concentrations and high C:P molar ratios
(lake C:P = 1091 and rivers C:P = 824) in plant tissue combined with perennial growth give
the opportunity to form mass stands under extremely low nutrient regimes. They also make
the plant relatively unattractive to generalist grazers [2,8] in addition to being a cyanogenic
plant [37]. In southern Norway, aquatic plants including Juncus bulbosus were also found to
have higher heavy metal concentrations in their tissue than terrestrial plants but suggested
aquatic plants as a source of sodium for moose [38].
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Figure 3. Tissue nutrient concentrations (% dry weight) from (i) the shoots of Juncus bulbosus (filled
circles) and associated species (open circles) collected in Scotland during the summer across all
types of aquatic habitats (n = 102 samples [14]); (ii) 12 species of hydrophytes and helophytes
(open squares) from oligotrophic Spanish lakes [36]. Species list from Scotland with the number of
samples (corresponding to the number of datapoints per species on the graph): Callitriche hamulata
(8), Isoetes lacustris (4), Juncus bulbosus (11), Littorella uniflora (11), Lobelia dortmanna (5), Myriophyllum
alterniflorum (13), Potamogeton alpinus (2) P. natans (18), P. polygonifolius (12), Sparganium angustifolium
(12), Subularia aquatica (1), Utricularia intermedia (2) Utricularia vulgaris sensu lato (3). Same nutrient
threshold as Figure 2.

Reading through the original publications [24,39,40], no factorial experiments were
ever carried out to test the independent and interactive effects of CO2, N and P on the
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Juncus bulbosus growth rate and yield. The liming of lakes in Norway promoted J. bulbosus
mass development through the mineralisation of the organic matter with the production of
CO2, NH4 and inorganic P in sediment pore water [24] until the organic matter became
less reactive over time [41]. In the presence of sufficient N and P, CO2 can be a limiting
factor [39,40,42]. Excess of CO2 availability relative to N and P is expected to increase the
C:N and C:P of autotrophs in nutrient-poor freshwater ecosystems [43–45]. General N
and/or P limitations have been reported for the phytoplankton of Norwegian lakes [46,47]
and inferred through J. bulbosus plant tissue nutrient concentration and stoichiometry [26].

The repeated story that the mass development of J. bulbosus would only occur un-
der high CO2 and sediment pore water NH4 concentrations [24,27,41,48] can only make
sense if the plant can access enough P for its growth because aquatic plant tissue C:N:P
stoichiometry is rather homeostatic [14,26], whatever the ecosystem, based on principles
of ecological stoichiometry. Thus, in Norwegian lakes and rivers, it is likely that CO2,
N and/or P could limit or colimit the growth rate of J. bulbosus. Certainly, the role of
P should not be disregarded (this study [26]). J. bulbosus has also been able to produce
stands with large biomass in (unlimed) oligotrophic ecosystems through perennial growth
where physical conditions allow (high light, low water turbulence) (Figure 4 [49]). There
were no significant differences in the water column and sediment pore water nutrient
concentrations between stands with low and high J. bulbosus biomass in rivers [50], unlike
for lakes shortly after liming [24].
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Figure 4. Juncus bulbosus in River Otra, Rysstad, Southern Norway. (a) Large growth form. (b) Rosette
growth form in the foreground; also note the white roots in the background (c) stem with annual
shoots. Photos by Benoît O.L. Demars.

4. Materials and Methods
4.1. Juncus Bulbosus

Juncus bulbosus is a perennial species common in oligotrophic and ultraoligotrophic
European lakes and rivers [51,52]. It has caused problems with mass development along
the littoral zones of many lakes and rivers since the mid-1980s [53–55]. Although these
problems have receded in some areas [41,56], it remains an issue in southern Norway [15,27]
(Figure 4). J. bulbosus is an amphibious plant morphologically very plastic, ranging from
small tufted terrestrial plants to submerged, floating aquatics, often rooting at the nodes and
freely fruiting [57]. In this study, all samples were rooted underwater, and thus J. bulbosus
may be referred to as f. aquatica, with the largest shoots reaching the water surface.

4.2. Growth Form and the Time of Year

In a preliminary study, 86 plant samples (3–10 shoots per lake) were separated into
rosette leaves, large growth forms (stem or “column” with annual shoots, as illustrated
in [15] and Figure 4) and new annual shoots (rosette-bearing segments) representing the
vegetative life cycle of J. bulbosus, collected in southern Norway from six lakes in spring
(31 May–14 June) and autumn (29 September–12 October, 2006) (Figure 4) [58].

We collected an additional set of plant samples (n = 40) from ten lakes with two growth
forms (rosette and large growth forms, both present in the ten lakes) and two summer
sampling times (21–26 June 2008 and 6–10 September 2008) per lake. The data are available
in the Supplementary Information.

4.3. Plant Organs (Roots versus Shoots) and Habitats (Lakes versus Rivers)

Sixteen lakes were sampled during 26–30 July 2010 and 28 river sites (50 m stretches
from 15 different rivers) during 4–16 August 2010 to analyse the roots and shoots of
J. bulbosus. Sites were chosen to span a wide range of J. bulbosus growth forms and abun-
dances. A single individual (root and shoot) of J. bulbosus per site was picked from the
dominant type of growth form or most abundant stand, as previously described [26,27].
Thus, rosette growth forms generally corresponded to stands with low biomass, whereas
large growth forms corresponded to stands with large biomass.

The concentrations of NH4, NO3, PO4, Ca, dissolved inorganic carbon (DIC), CO2,
total organic carbon (TOC), total N and total P, as well as pH and electric conductivity, were
determined for the water column. The concentrations of NH4, NO3 and PO4 in sediment
pore water, as well as the percentage of organic matter and proportion of pore water in
sediments, were also determined. All samples were collected and analysed, as described in
previous studies [26,27]. The data are available in the Supplementary Information.
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4.4. Plant Tissue C, N, P Analyses

All plants were cleaned free of detritus and periphyton by hand. The plants were
then freeze dried in 2006 [58] or air dried at room temperature for the 2008 and 2010
datasets [27]. The dried plants were ground prior to analyses for C, N and P, as previously
described [26,27].

4.5. Statistics

In total, we used three sets of data from southern Norway, briefly summarised in
Table 4. Two of the datasets (2008, 2010) were partially used in a previous study designed
to test different hypotheses, as explained in the Introduction (Section 1) [27]. Here we
did not combine those datasets as in [27] as they were not comparable, and we did not
use plant nutrient concentrations and stoichiometry as factors to explain plant abundance
(corresponding to growth form) as in [27] but as response variables to test for the effects
of seasons, growth forms, organs and habitats. We then interpreted those datasets differ-
ently to [27] with a comparative approach based on a review of laboratory bioassays, as
previously applied to a dataset collected in 2007 [26].

From the lakes surveyed in 2006 and 2008, we tested for differences in C, N, P and
C:N:P with mixed-effects models (allowing for unbalanced design) using sampling time or
growth form as the fixed effects and site as the random effect. Sampling time or growth
form were also used as random effects when testing for growth form or sampling time,
respectively. The response variables were log transformed prior to analyses to normalise
the data. Differences were considered significant after correcting for multiple testing using
a Bonferroni correction (α = 0.05/n, with n number of tests). Statistics were computed in R
version 3.5.0 [59] using the lme4 package [60]. The fit of the models with significant fixed
effects was assessed with the conditional and marginal coefficient of determination (R2)
using the R function r.squaredGLMM from the MuMIn package [61,62]. The conditional R2

represents the variance explained by fixed and random factors together, and the marginal
R2 represents the variance explained solely by the fixed effects.

From the lakes and rivers surveyed in 2010, we first tested whether there were any
statistical differences in environmental variables, notably in nutrient concentrations (water
and sediment) using one-way ANOVA in R. We then tested for the effect of habitats (lake
and river), organs (root and shoot) and their interaction on C, N, P and stoichiometric
molar ratios using two-way ANOVA in R version 3.5.0 [59]. It was not necessary to apply
any data transformations prior to statistical analyses in this dataset.

In addition, we used multivariate analyses (redundancy analyses) to test for the single
and collective effects of organs (root, shoot), habitats (lakes, rivers) and environmental
variables (water and sediment chemistry) on plant nutrient concentrations (C, N, P) and
stoichiometry (C:N, C:P, N:P) using the 2010 dataset. We also calculated sediment pore
water nutrients per volume of sediment (concentrations × pore water volume). Missing
values for plant P tissue in 10 samples and sediment pore water in 11 samples (out of
80 samples) were handled in two different ways, either by replacing missing data with
averages taken across all samples or simply removing the samples with missing data. This
led to virtually the same results. Electric conductivity, NH4 and sediment pore water
concentrations were ln transformed to normalise the data. The significance of individual
predictors was tested by running 999 unrestricted Monte Carlo random permutations.
We then use a forward stepwise selection of significant variables to produce the best
models. The multivariate analyses were run with Canoco 5.0 (Microcomputer Power:
Ithaca, NY, USA) [63].

5. Conclusions

There was no (or very little) difference in plant nutrient concentrations between
growth forms but large differences between the time of year, habitats and organs. The very
high C:P ratios recorded here suggested Juncus bulbosus is not attractive to grazers and
combined with (slow) perennial growth can reach high standing biomass in nutrient-poor
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lakes and rivers as observed. In order to quantify nutrient retention of aquatic plants in
oligotrophic aquatic ecosystems, it will be important to sample year-round and quantify
the contribution of roots and shoots.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/441/s1, Table S1: Lake 2008 CNP data.xlsx, Table S2: River lake 2010 CNP data.xlsx.
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