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Abstract 45 

Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, 46 

molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its 47 

importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have 48 

been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) 49 

may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) 50 

effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual 51 

identity. This critical review summarizes the current knowledge of the JH-mediated effects in the 52 

freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine 53 

disruptive outputs to establish a systematic understanding of JHA effects. Based on the current 54 

knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in 55 

cladoceran leading to male offspring production and subsequent population decline were 56 

developed. The weight of evidence (WoE) of AOPs was assessed according to established 57 

guidelines. The review and AOP development aim to present the current scientific understanding 58 

of the JH pathway and provide a robust reference for the development of tiered testing strategies 59 

and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory 60 

processes. 61 

 62 
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 66 

1. Introduction 67 

Juvenile hormones (JHs) are a family of acyclic sesquiterpenoids that regulate a range 68 

of physiological processes in insects. These substances regulate metamorphosis, ovarian 69 

development, reproductive behavior, and various types of phenotypic plasticity, such as caste 70 

determination in social insects and weapon traits development in beetles during their life cycles.1, 71 

2 In addition to insects, the JH system is believed to be conserved in the majority of arthropods, 72 

including Malacostraca crustaceans (e.g., crabs and shrimps) and Cladocera (water flea) 73 

(Branchiopoda, Figure S1).3 Methyl farnesoate (MF), which is structurally related to the insect 74 

JHs and identified in various Malacostracan species, is generally accepted as a significant innate 75 

JH in Malacostracan crustaceans.4-7 Moreover, MF likely acts as a natural JH molecule in 76 

Daphnia species.8 77 

A wide range of artificial JH analogs (JHAs) such as pyriproxyfen, fenoxycarb, 78 

methoprene, and diofenolan, have been developed as insect growth regulators (IGRs) to control 79 

harmuful insects.9 Since JHAs have been used worldwide in agriculture, aquaculture and 80 

household applications (e.g., insect pest control on pet animals), environmental contamination by 81 

JHAs and their adverse effects on nontarget arthropod species, such as molting and 82 

metamorphosis defects, larval lethality, and disruption of sexual determination and reproduction, 83 

are of high concern.10–14 Water fleas reproduce by parthenogenesis and usually produce only 84 

female offspring under appropriate environmental conditions. However, both JHs (e.g., JH III and 85 

MF) and JHAs (methoprene, pyriproxyfen, fenoxycarb, hydroprene, kinoprene, epofenonane, and 86 
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diofenolan) induce dose-dependent increases in male offspring and decreases in reproduction 87 

among many Cladocera genera (i.e., Daphnia, Ceriodaphnia, Moina, Bosmina, and Oxyurella).15–88 

24 For example, pyriproxyfen was detected in the Júcar river, Spain, ranging from 83 to 100 ng/L25 89 

and has been reported to reduce fecundity and induce male offspring in Daphnia magna at a 90 

concentration 30 and 100 ng/L, respectively16, suggesting potential JH disrupting risks of 91 

pyriproxyfen to Daphnia in the Júcar river (maximum concentration 100 ng/L/LOEC for 92 

reproduction 30 ng/L= 3.3). 93 

 Therefore, male offspring induction in Daphnia species has been applied as a new 94 

endpoint for screening chemicals with JH activity in the OECD test guideline, Daphnia magna 95 

Reproduction Test Annex 7 (OECD TG211)26, and was cited as OECD non-mammalian test for 96 

evaluating endocrine disrupting chemicals (EDCs).27 However, this assay has not been applied 97 

yet in regulations of EDCs such as the Biocidal Products Regulation (BPR, Regulation (EU) 98 

528/2012) or the Plant Protection Products Regulation (PPPR, EC 1107/2009) in the EU due to 99 

the scarce knowledge on the endocrinology for non-target invertebrate.28 In particular, it should 100 

also be considered that daphnids can also produce male offspring in response to natural 101 

environmental factors (e.g., short photoperiod, temperature fluctuation, decreased food density, 102 

and overpopulation).27,29,30 Watanabe et al.31 has demonstrated that the D. magna NIES strain does 103 

not induce male offspring in response to these environmental changes, whereas the D. magna 104 

LRV13.2 and LRV13.5-1 strains and the D. pulex WTN6 strain produce male offspring in 105 

response to photoperiod differences.8,30,32 It is urgently required to mechanistically understand 106 

how chemicals and environmental stimuli perturb the JH signaling pathway in order to 107 

discriminate effects due to chemical exposure or environmental stimuli. It is also crucial to 108 
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assemble existing knowledge and assess the weight of evidence (WoE) to better understand the 109 

research status in this field and evaluate the suitability of test methods for detecting arthropod 110 

JHAs.  111 

Conceptual frameworks, such as adverse outcome pathways (AOPs), are increasingly 112 

used to organize the existing knowledge and describe a sequential chain of causally linked events 113 

at various levels of biological organization that lead to an adverse effect of regulatory concern.33,34 114 

The OECD has published a guidance document for development, assessment and application of 115 

AOPs for chemical safety evaluation34. An AOP describes a sequence of events commencing with 116 

initial interaction of a stressor/chemical with a biomolecule within an organism (i.e., molecular 117 

initiating event, MIE), which can progress through a dependent series of intermediate key events 118 

(KEs) and culminate in an adverse outcome (AO) considered relevant to risk assessment or 119 

regulatory decision-making. KEs are connected to one another via scientifically-based linkages 120 

defined as KE relationships (KERs). The AOPs can better align information generated by in vitro 121 

and in silico assays to conventional in vivo ecotoxicity testing results.  122 

To assess the degree of confidence supporting an AOP, the Evolved Bradford–Hill 123 

weight of evidence (WoE) considerations are recommended by the OECD.34 Using these 124 

harmonized WoE assessment criteria, one can efficiently capture the current knowledge status 125 

and identify future research needs. At present (October 2021), as many as 375 AOPs have been 126 

submitted to an AOP repository database, the AOPwiki (www.aopwiki.org), however, AOPs for 127 

invertebrate species are currently limited. In the critical review, we summarize the current 128 

knowledge on the JH system in Cladocera, propose and evaluate novel AOPs describing JH 129 
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synthesis and signaling disruption leading to male offspring induction, reproduction decrease, and 130 

population decline. 131 

 132 

2. Methyl Farnesoate System in Daphnia   133 

2.1. Synthesis of MF 134 

2.1.1. Genes responsible for MF biosynthesis pathway 135 

In insect species, the concentration of innate JHs in the hemolymph, which regulate the 136 

development, growth, and reproduction, is precisely controlled by various physiological 137 

processes such as synthesis, degradation, sequestration, and secretion. The synthesis step has 138 

generally been believed to be the most important for downstream effects of JHs.35,36 The 139 

endogenous MF is nearly identical in structure to insect JH, JH III, only differing in the presence 140 

of an epoxide ring at the terminal end, indicating that the biosynthetic pathway of MF is very 141 

similar to that of JHs (Figure S2). The biosynthetic pathway of JH consists of two main steps: the 142 

mevalonate pathway where acetyl-CoA is converted to farnesyl diphosphate (FPP), and the JH-143 

specific pathway responsible for the conversion of FPP to MF and then to JH III.37 The genes 144 

involved in the mevalonate pathway and the putative farnesoic acid O-methylfransferase (FAMeT) 145 

have been identified in D. pulex.38 In addition to FAMeT, the JH acid O-methylfransferase 146 

(JHAMT) gene was found.39 Previous studies using recombinant JHAMT proteins of several 147 

insect species such as Bombyx mori, Drosophila melanogaster, and Aedes aegypti demonstrated 148 

that JHAMT has a vigorous methylation activity that not only converts JH III acid into JH III but 149 

also converts FA into MF. However, a recent study has revealed that JHAMT of D. pulex only 150 
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converts FA to MF. In contrast, it does not generate JH III from JH III acid8, suggesting that 151 

JHAMT may catalyze the final step of MF synthesis in crustaceans, and MF is likely an innate 152 

JH molecule in daphnids. The MF is finally converted to JH III by CYP15A1 in insects, except 153 

for the Lepidoptera (Figure S2).40 However, CYP15A1 orthologs have never been found in other 154 

Arthropoda except for insects8,41, indicating that the CYP15A1 gene acquisition might have been 155 

an important event enabling JH biosynthesis in insects.40 156 

 157 

2.1.2. Regulation of MF synthesis 158 

To date, there has been a large body of studies that have characterized and contributed to our 159 

understanding of the regulatory mechanisms of JH synthesis (i.e., neuropeptides, and 160 

neurotransmitters in insect species35,37 and in Malacostracan decapod crustaceans42). However, 161 

these factors are mostly unknown in daphnids due to a lack of baseline knowledge regarding 162 

endogenous MF titers. Current instrumental analytical technologies, such as liquid or gas 163 

chromatography-mass spectrometry (LC- or GC-MS), enable thedetection and quantification of 164 

MFs and JHs in extracts and hemolymphs of several insect species.43-45 In contrast, no studies 165 

have yet successfully measured MF in daphnids due to the possibility that endogenous MF levels 166 

are lower than those typically found in insect species, and thus, the analytical characterization of 167 

MF titers in these small crustaceans is limited. The description of periodical fluctuation of 168 

endogenous MF titers during the life cycle of Daphnia remains unknown. Until recently, such a 169 

condition was a significant obstacle to characterizing the regulatory mechanism of MF synthesis. 170 

A new approach taking advantage of the direct link between MF and male sex determination in 171 

daphnids has recently overcome the obstacles of accurately controlling offspring sex using a 172 
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WTN6 strain of D. pulex through the alteration of culture photoperiod.8,31 Female offspring is 173 

predictability produced if a mother is reared under long-day conditions (14 h-light, 10 h-dark), 174 

whereas male offspring production occurs when mothers are raised under short-day conditions 175 

(10 h-light, 14 h-dark). This photoperiod-dependent sex determination system can be an excellent 176 

tool for understanding the molecular basis for environmental sex determination and the role of 177 

the MF system in daphnids. 178 

Quantitative real-time PCR of JHAMT during the parthenogenetic reproductive cycle 179 

of Daphinia demonstrated that the MF synthesis process is activated just before the male sex-180 

determining period during oocyte maturation in ovo.8 Moreover, transcriptome and chemical 181 

treatment assays with agonists and antagonists revealed that ionotropic glutamate receptors 182 

(iGluRs), especially N-methyl-D-aspartic acid (NMDA) receptor subtypes, are an essential 183 

element for male offspring induction as they act as an upstream regulator of MF signaling.46 184 

Moreover, metabolome analysis supports the proposal that glutamate (known as one of the natural 185 

ligands of NMDA receptor) accumulates dramatically in daphnid mothers at a sex-determining 186 

period when reared under male-producing (short-day) conditions.47 Similar to daphnids, 187 

glutamate and its signaling pathway via NMDA receptor are also known to mediate the JH 188 

synthesis in several insect species.48,49 The NMDA signaling promotes the synthesis of JHs by 189 

activating the transcription of JHAMT via the decapentaplegic-mediated transforming growth 190 

factor β (TFG-β) signaling pathway in D. melanogaster.48 Although NMDA receptor involvement 191 

remains unknown, Ishimaru and colleagues49 revealed that TFG-β signaling regulates the 192 

synthesis of JH by upregulating JHAMT transcription in the cricket, Gryllus bimaculatus, 193 
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suggesting that the signaling pathway of TFG-β may be widely conserved to control the synthesis 194 

of JH in insect species. 195 

In addition to the NMDA pathway, involvement of the protein kinase C (PKC) 196 

signaling pathway was identified in the male sex determination of D. pulex. This pathway acts as 197 

an upstream regulator of MF signaling by cotreatment assay of inhibitor and MF with several 198 

concentrations.52 However, several pioneering kinds of research, using some insects and 199 

crustaceans, revealed that PKC acts as a crucial element in the downstream of JH signaling 200 

pathway. For instance, it associates with the membrane receptor of JH to mediate the JH signaling 201 

in male accessory glands of D. melanogaster and ovarian follicle cells of Locusta migratoria.5354 202 

In addition, its activation is induced by MF treatment to stimulate larval metamorphosis in the 203 

barnacle Balanus amphitrite.55 Although a previous study has demonstrated that PKC rapidly 204 

recruits NMDA receptors to the surface of Xenopus oocyte cells and increases their channel-205 

opening rates56, molecular relationships between NMDA and PKC signaling for MF synthesis in 206 

daphnids remains unclear. More detailed analyses with various inhibitors and activators in 207 

daphnids will inevitably help understand the diversified PKC signaling involved in the JH 208 

pathway among arthropods. 209 

Pantothenate (vitamin B5) was found to be accumulated in daphnid mothers at the 210 

onset of the sex-determining period reared under male-producing conditions in the WTN6 strain 211 

of D. pulex.47 Pantothenate is a water-soluble vitamin ubiquitously present in living organisms, 212 

also known as a precursor of co-enzyme A (CoA). Pantothenate administration to mother 213 

individuals demonstrated that the male induction ratio is significantly increased, suggesting that 214 

it might act as a male-sex determinant substance. The pantothenate’ molecular mechanism during 215 
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the MF or JH synthesis pathway activation is mostly unknown, even in model insect species, 216 

including D. melanogaster. One possible hypothesis is that it is supplied as a primary source for 217 

the MF synthesis pathway because both MF and JHs are sesquiterpenoids that are initially 218 

synthesized from acetyl-CoA through the mevalonate pathway. Previous studies using the 219 

budding yeast Saccharomyces cerevisiae and engineered Escherichia coli demonstrated that 220 

pantothenate is the rate-limiting precursor of CoA synthesis. When this substance is administrated 221 

in the culture medium, it could increase the farnesoid yields.57,58 More detailed analyses will be 222 

necessary to elucidate the pantothenate involvement in MF biosynthesis in the insects and 223 

daphnids. 224 

Taking together the knowledge above based on the photoperiod-dependent sex 225 

determination system of the D. pulex WTN6 strain, we propose the following possible hypothesis 226 

underlying mechanisms of MF synthesis. When a mother detects the short-day cues: 1) 227 

pantothenate accumulation occurs to activate the mevalonate and MF synthesis pathways; 2) PKC 228 

pathway recruits the NMDA receptor and increases its channel-opening rates; and 3) the NMDA 229 

signaling pathway mediates the MF synthesis via the activation of JHAMT expression (Table 1). 230 

To reinforce those signaling pathways driving male sex-determination, it was recently found that 231 

in some strains of D. magna, the proportion of female or male offspring varies depending on 232 

photoperiod. The LRV13.2 strain produces female or male offspring, respectively, under the long-233 

day or short-day conditions (similar to D. pulex WTN6 strain), whereas the LRV13.5-1 strain 234 

produces female or male offspring under the short-day or long-day conditions.32 Furthermore, 235 

both D. magna strains could alter female or male offspring production in response to photoperiod 236 

differences as well as the D. pulex WTN6 strain by lifelong rearing experiments. These findings 237 
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suggest that MF signaling regulates the signaling pathways underlying sex determination 238 

processes via iGluRs and PKC pathways in daphnids. 239 

In contrast, iGluRs agonists and pantothenate did not show male inducibility in D. 240 

magna, unlike the WTN6 strain (Table 1). This result indicates that molecular mechanisms 241 

underlying male sex-determination may diverge between D. magna and D. pulex.59 Additional 242 

comparative analysis will become essential to verify whether other daphnid genotypes may 243 

control offspring sexes in response to various environmental stimuli and assess whether this 244 

process can be generalized to a larger domain of Daphnia species. 245 

 246 

2.2. MF receptor system 247 

The molecular structure of JH receptor in the daphnid has been a long-standing 248 

mystery. In recent years, exploratory advances have been made to identify the Methoprene-249 

tolerant (Met) protein as a JH receptor in many insects.60,61 The Met is a nuclear transcription 250 

factor of the basic helix-loop-helix-Per-Arnt-Sim (bHLH-PAS) family, which is generally known 251 

to form homodimer or heterodimer complexes with other bHLH-PAS proteins to initiate DNA 252 

binding and transcriptional regulation.62 Recent studies showed that a bHLH-PAS protein, the 253 

steroid receptor coactivator (SRC; also known as FISC and Taiman), forms a heterodimer with 254 

Met in response to the presence of JHs. It activates the downstream JH-responsive genes (e.g., 255 

early trypsin in A. aegypti, and Krüppel homolog 1 (Kr-h1) in Tribolium castaneum and B. mori 256 

560,61,63–65), which suggests that Met-SRC heterodimeric complex plays a crucial role in the JH 257 

signaling pathway in insect species. However, unlike in insect species, Kr-h1 is not a JH-258 

responsive gene in D. pulex.66 In addition to SRC, other bHLH-PAS proteins, such as Cycle 259 
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(CYC), were identified as distinct partner of Met in A. aegypti.67 It was shown that the MET-CYC 260 

heterodimer regulates the transcriptions of Kr-h1 and Hairy in response to JH III in the context 261 

of photoperiod-dependent circadian regulation in female A. aegypti. This implies that Met is an 262 

obligatory component of JH receptor and can recruit different bHLH-PAS partners under sex-, 263 

developmental stage-, tissue-, and gene-specific conditions. 264 

The orthologs of Met and SRC were identified from two water fleas, D. pulex and D. 265 

magna, and found that Met and SRC form a heterodimer in response to MF and other JH-like 266 

chemicals68,69, suggesting that the molecular mechanisms underlying JH reception and its 267 

downstream transduction are conserved between insects and daphnids. Moreover, rhythmical 268 

production and accumulation of Met as multimers were demonstrated in the absence of MF in D. 269 

pulex.670 In contrast, Met stimulates dissociation of its multimers to form a heterodimer with SRC 270 

in the presence of MF.70 Based on the finding of Met-SRC complex as a JH receptor of daphnids, 271 

a highly-sensitive reporter system for detecting juvenoids was established to enable rapid and 272 

cost-efficient in vitro screening of JH-active chemicals.70 Up to now, Met has been identified in 273 

many other species, including the shrimp Neocaridina denticulata41, horseshoe crabs species 274 

(Carcinoscorpius rotundicauda, Limulus polyphemus, and Tachypleus tridentatus), and the 275 

chelicerate black-legged tick Ixodes scapularis72, thereby suggesting the JH system 276 

comprehensive conservation in Arthropoda. 277 

 A wide range of JH-active candidate chemicals makes it difficult to test the JH activity 278 

of all chemicals using in vivo and in vitro assays using daphnids. Computational (in silico) models 279 

using knowledge about ligand-binding interactions with endocrine receptors have been 280 

increasingly implemented to characterize receptor-binding specificities and interspecies 281 
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differences in ligand binding. They also provide rapid (high-throughput) screening tools to 282 

identify active receptor ligands in arthropods, including daphnids.73,74 A set of homology docking 283 

models of the PAS-B domain of Met in D. pulex and D. magna were recently developed based 284 

on the crystal structure of HIF-2 to predict and simulate the binding activity between Met and 285 

JH-active ligands in daphnids.75 The three-dimensional structures of both models developed were 286 

highly conserved, although there were eight mismatched amino acids located on the protein 287 

surface (Figure 1A). Moreover, molecular docking simulations of JH and its analogs with Met in 288 

daphnids provides a relatively better prediction for detecting JH-active ligands. This result shows 289 

a positive correlation in the interaction energies with each of the experimental values of in vitro 290 

Met-mediated transactivation potencies and in vivo JH activities based on male induction (Figure 291 

1B).75 In silico approaches using the Daphnia Met model may offer valuable screening tools for 292 

detecting JH-active candidate chemicals and supporting development of an Integrated 293 

Approaches to Testing and Assessment (IATA) 294 

(https://ec.europa.eu/jrc/en/eurl/ecvam/alternative-methods-toxicity-testing/iata). 295 

 296 

3. Adverse Effect of Potential Antagonists and Inhibitors of MF Synthesis  297 

As aforementioned in section 2.1, MF synthesis is regulated by NMDA and PKC signalings in D. 298 

pulex.46,52 The NMDA receptor-mediated glutamate signaling is also crucial in the stimulatory 299 

pathways of JH synthesis in cockroach Diploptera punctata.49 Moreover, in the cricket G. 300 

bimaculatus, MK-801 (a specific antagonist of NMDA receptor) inhibits in vitro JH synthesis in 301 

the JH-synthesizing organs, corpora allata (CA), and reduces JH III titers in a dose-dependent 302 

https://ec.europa.eu/jrc/en/eurl/ecvam/alternative-methods-toxicity-testing/iata
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manner.76 Likewise, in D. pulex WTN6 strain, MK-801 (20 μM) strongly suppresses the male 303 

offspring production under the short-day condition that may induce an increase in endogenous 304 

MF titers.8 Although pharmacological assays with three agonists for iGluRs (i.e., NMDA, AMPA, 305 

and kainate [100 μM each]) show stimulatory effects on male offspring production, treatment 306 

with 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline, NBQX (antagonist for AMPA and 307 

kainate receptors; 100 and 200 μM) does not show significant suppressive effects.46 As a PKC 308 

inhibitor, Bisindolylmaleimide IV (BIM, 10 μM) was used for topical application to D. pulex 309 

mature female daphnids and caused a substantial reduction of the male to female offspring ratio.52 310 

Together, MK-801 and BIM act as inhibitors of MF synthesis in D. pulex. Topical application of 311 

both chemicals does not change the offspring number associated with a male ratio decline.46,52 312 

 313 

4. Adverse Effects of MF Receptor Agonists 314 

After discovering the Met and SRC as JH receptors (JHR), a quantitative yeast two-hybrid assay 315 

system was developed in A. aegypti.63,67 Likewise, a two-hybrid luciferase assay with Met and 316 

SRC was developed in two Daphnia species, D. pulex and D. magna, and three insects, such as 317 

D. melanogaster, T. castaneum, and A. aegypti.68,70,77 These systems enabled efficient screening 318 

of JHAs by detecting heterodimerization of Met and SRC in response to a group of chemicals that 319 

act as direct ligands for binding and activation of the JH receptor. 320 

Numerous chemicals bearing JH activity have been artificially designed and developed 321 

as novel insecticides.9 Toxic effects of several JHAs were investigated followed by OECD 322 

TG21126 and found that four natural JHs (JH I, II, III, and MF) and seven JHAs (15ethoprene, 323 
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pyriproxyfen, fenoxycarb, hydroprene, kinoprene, epofenonane, and diofenolan) can induce a 324 

dose (concentration)-dependent male offspring production in D. magna.15–19,23,24,78 At present, 325 

based upon the aforementioned two-hybrid assay, 16ethoprene, pyriproxyfen, fenoxycarb, and 326 

diofenolan were confirmed as JH agonists in addition to MF and JH III.24,68,77 Moreover, most of 327 

these JHAs cause declines in the number of produced offspring.16,18,24,78,79 The lowest observed 328 

effect concentration (LOEC) for reproduction decrease (2–31,000 ng/l) is lower than or at least 329 

equal to that of the LOECs for the induction of male offspring production (4–130,000 ng/l).24,79 330 

Diofenolan shows the most substantial effects on induction of male offspring production and 331 

reproduction suppression among them.24 The increase of the proportion of male offspring and 332 

reduction of offspring number triggered by JHAs exposure could have catastrophic effects on the 333 

Daphnia populations in aquatic ecosystems. Indeed, some studies with other pesticides, such as 334 

fenvalerate, demonstrated that severe reproduction perturbations might require 1–3 generations 335 

before returning to normal.80,81 Ginjupalli and Baldwin82 show that the effects of pyriproxyfen on 336 

D. magna population dynamics are time-dependent; longer exposures extend male production and 337 

decrease reproduction. They also showed that juvenile daphnids exposed to pyriproxyfen for only 338 

2–4 days needed approximately 10 days for recovery in reproduction.82 These data suggest that 339 

JHAs exhibit detrimental effects on daphnid population dynamics by increasing male population 340 

ratios and that prolonged exposures cause are more severe effects. Although a direct experimental 341 

study on population level was not available, a population model has separately predicted the 342 

effects of male production and reproduction inhibition on the population growth rate.83 Tanaka et 343 

al.83 established a population model based on the 21-day reproduction assay data using 344 
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pyriproxyfen79, and they suggest a sex change decreased population growth rate comparable 345 

magnitude with that posed by the reproduction inhibition. 346 

 347 

5. AOP development and evaluation  348 

5.1. Conceptual AOP assembly 349 

Based on the comprehensive knowledge on the JH pathways in daphnids, we have assembled a 350 

series of conceptual AOPs (Figure 2) describing perturbations to JH synthesis and downstream 351 

signaling pathways, leading to population decline. The JH synthesis pathway induced by 352 

environmental stimuli or chemicals presents an upstream of the JHR mediated pathway leading 353 

to male offspring induction. The JHR mediated pathway is also initiated by JHAs independently 354 

from the JH synthesis pathway and may lead to two parallel KEs, male offspring induction and 355 

vitellogenin decrease, which finally cause reproduction impairment and population decline.  356 

 357 

5.1.1. AOP for JH synthesis disruption 358 

Based on the current experimental evidence described in section 2.1, the NMDA receptor (iGluR) 359 

activation is considered as a MIE (MIE/KE1) of the AOP for JH synthesis disruption, triggered 360 

by environmental stimuli (i.e., short-day conditions) or chemicals (iGluR agonist and antagonist). 361 

This MIE promotes JH synthesis by activating JHAMT transcription (KE2), followed by a JH titer 362 

increase (KE3) (Figure 2). Pantothenate accumulation (a possible precursor of acetyl-CoA) is 363 

removed from the AOP at present due to inconsistent evidence being observed for D. pulex and 364 

D. magna.47,59 The PKC signaling activation is also involved in male offspring induction as an 365 
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upstream regulator of JH signaling. However, more work needs to be done to better elucidate the 366 

relationship between the NMDA receptor and the PKC signaling pathway. 367 

 368 

5.1.2. AOPs for disruption of JHR signaling 369 

An increase in the JH titer (KE3) can lead to acvitation of the JHR (KE4). However, the JHR 370 

mediated pathway is also promoted by many exogenous JHAs (e.g., pyriproxyfen, fenoxycarb, 371 

hydroprene, kinoprene, and diofenolan).18,24,78 Therefore, JHR activation is also considered as an 372 

MIE for the AOPs (AOP2 and AOP3, Figure 2) that are directly triggered by JHAs. Activation of 373 

the JHR can lead to male offspring induction and reproduction failure. Among several JHR target 374 

genes reported in the literature,48,84–86 doublesex1 (dsx1) has been identified as a key regulator of 375 

offspring sex differentiation in several daphnids.22,89 As an activator and regulator of dsx1 376 

expression, the basic-leucine zipper transcription factor Vrille and long noncoding RNAs (named 377 

doublesex1 alpha promoter-associated long RNA) were also reported as the auxiliary events of 378 

AOP.90,91 The dsx1 activation (KE5) has been considered the best suited marker due to its 379 

essentiality in male trait formation, and thus it is proposed as a KE in the JHR AOPs (AOP1 and 380 

AOP2; Figure 2). 381 

An increase in the proportion of male offspring can normally lead to reproduction 382 

decrease (AO1/KE6) and potential population decline.83 Moreover, most of JHAs, except for 383 

epofenonane, directly suppress reproduction at a lower concentration than where male offspring 384 

is induced.78 Therefore, both KEs/AOs simultaneously contribute to the final AO, population 385 

decline. The biological cascades between JHR activation and reproduction decrease has not been 386 

fully characterized, however, yolk protein vitellogenin (VTG) was found as the most abundant 387 
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polypeptidein in D. magna eggs 92 and several studies suggested that mRNA expression of vtg 388 

was downregulated by JHAs.84,85,88 Therefore, vtg decrease was selected as an upstream KE of 389 

reproduction decline and proposed this as a separate linear AOP (AOP3, Figure 2). The AOP1 390 

initiating from the JH synthesis pathway may also affect VTG production through JHR activation. 391 

However, only the male offspring induction pathway is included for a linear pathway and a 392 

branched pathway is independently evaluated as AOP3. 393 

 394 

5.2. Assessment of the AOPs. 395 

A WoE assessment has been performed to evaluate the strength of the proposed AOPs.34 396 

Essentiality of the KEs (Table 2), biological plausibility, empirical support and quantitative 397 

understanding of the KERs (Table 3) were used as the main assessment criteria34. The three AOPs 398 

are assessed separately as shown below, and a detailed list of supporting evidence can be found 399 

in the supporting information. 400 

 401 

5.2.1. AOP1: JH synthesis disruption pathway leading to induction of male offspring, 402 

reproduction, and population decline 403 

Essentiality of KEs 404 

The essentiality of iGluR activation (MIE/KE1) is considered high, based on direct experimental 405 

evidence showing that the iGluR antagonist inhibited male offspring production under a short-406 

day condition for D. pulex WTN6 strain and D. magna LRV13.2 and LRV13.5-1 strains.8,46,59 407 

The iGluR agonist treatment that induced male offspring in D. pulex WTN6 strain under a long-408 

day condition also provide additional support.46,59 For essentiality of JHAMT activation (KE2), 409 
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enzymatic assays provide direct evidence showing that KE2 stimulated KE3 (JH titer increase). 410 

In such assays, a recombinant JHAMT protein of D. pulex catalyzed MF from FA.8 The MF is 411 

now considered an innate JH in daphnids and other crustaceans, but a direct measurement method 412 

for MF in the daphnids has still not been successfully established. Therefore, direct support for 413 

essentiality of the JH titer increase (KE3) is not available at present. Nonetheless, apical treatment 414 

of numerous JHs and JHAs in the JHR reporter gene assay and in vivo assay shows the JHR 415 

activation,68,71,77,69 dsx1 activation,22,89 and male offspring induction and reproduction 416 

impairment.18,24,78 These results support a moderate essentiality of KE3. The LC-MS/MS and GC-417 

MS methods have been established to quantify endogenous MF titers in insects and other small 418 

crustaceans such as the amphipod Gammarus locusta and the branchiopod Artemia franciscana.43-419 

45,94 We hypothesize it would also apply to the daphnid species in further studies. 420 

 The essentiality of JHR activation (KE4) and dsx1 activation (KE5) leading to male 421 

offspring induction (KE7) is highly supported by transcriptional knockdown studies resulting in 422 

the aborted embryo and lack of male phenotype.68,89 The essentiality of KE5 is also supported by 423 

indirect evidence that dsx1 expression was observed only in male offspring of several daphnid 424 

species.22 In a two-generation reproduction test using D. magna, pyriproxyfen (0.5 µg/L) 425 

produced almost no female offspring in the first generation and no reproduction was observed in 426 

the second generation, supporting the essentiality of KE7 and reproduction decrease 427 

(KE8/AO2).95 Tanaka et al.83 has described a population model that provides indirect support for 428 

the essentiality of KE7 and KE8, demonstrating that the effects of pyriproxyfen on both KE7 and 429 

KE8 could lead to a decrease in population growth rate (AO3). 430 

 431 
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WoE evaluation of KERs (KER1-KER7) 432 

The biological plausibility of the KERs (KER1, KER2) linking environmental stimuli (e.g., short-433 

day condition) to inhibition of JH synthesis is not considered strong, due to a lack of supportive 434 

evidence. However, it may be biologically plausible, based on analogy to accepted biological 435 

relationships, in other insect and crustaceans,50,96,97 but the NMDAR and JHAMT genes have been 436 

identified recently and their physiological function within the daphnids has not been completely 437 

established. 438 

 For empirical support of the KERs, no experimental evidence is currently found to 439 

directly support dose-response and incidence concordance. Temporal concordance is supported 440 

by the upregulation of the JHR subunit genes (Met and SRC) after the induction of NMDR-b and 441 

JHAMT at the early stage of reproductive cycle (Figure S3) in D. pulex WTN6 strain under short-442 

day conditions.98 However, the regulatory mechanism between iGluR and JHAMT activation has 443 

not been fully characterized. Some inconsistencies have also been reported for NMDA receptor 444 

agonism between D. pulex and D. magna,59 indicating that the molecular mechanism regulating 445 

the NDMA signaling may differ between the two species. The JH titer should increase after the 446 

JHAMT activation8, but the temporal change of JH titer during the reproductive period was not 447 

directly analyzed in daphnids. Therefore, more experimental evidence regarding KE3 is needed 448 

after the appropriate analytical method for the determination of JH titer in daphnids is established. 449 

Therefore, empirical support for KER1 and KER2 is considered low at present. 450 

 In contrast, the biological plausibility between the JH titer increase to male offspring 451 

induction (KER3, KER4, KER5) is considered high based on the numerous JHR reporter gene 452 

assay studies,68–71,77,69 the function of dsx1 geneduring sex differentiation (male trait development 453 
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in daphnids),89–91,98 and male offspring observation in many JHs and JHAs exposure studies.15–454 

19,23,24,78,99,100 For empirical support, dose-response and temporal concordance between KE4 (JHR 455 

activation) and KE7 (male offspring induction) were demonstrated following exposure to several 456 

specific stressors (JHs and JHAs) using reporter assay and gene expression analysis in vivo 457 

studies,68–71,77,69 whereas KE5 was only observed for one fenoxycarb concentration (1 μg/L).89–458 

91,98 The recently developed luciferase assay that detects the transcriptional activation of the 459 

modified JH response elements (JHRE) from T. castaneum Krüppel homolog 1 (a major JH-460 

responsive gene in insects) by the Daphnia JHR demonstrated that the JHR activation by 461 

fenoxycarb occurred at almost the comparable concentration (EC50 = 4.92 × 10−9 M)71 as that of 462 

dsx1 upregulation in vivo (LOEC ≤ 3.31 × 10−9 M).89 On the basis of the limited number of 463 

supporting studies, no inconsistencies were found. Even though the three KEs have not been 464 

evaluated in the same study, the time-course gene expression analysis of the JHR subunits (Met 465 

and SRC) and dsx1 indicated that KE4 occurred earlier (expression peak was observed ~36 h 466 

before ovulation70,97) than the KE5 (from 3 h post-ovulation89,91,98) and KE7 (Figure S3). At 467 

present, there is no inconsistency in empirical support across different Daphnia species. However, 468 

full-length sequences of Met and SRC genes were only identified in D. pulex and D. magna.68 The 469 

dsx1 genes’ homologs were conserved in several cladoceran species, such as D. pulex, D. magna 470 

(NIES and Belgium strain), Daphnia galeata, Moina macrocopa, and Ceriodaphnia dubia.22 In 471 

conclusion, the empirical support for KER3, KER4, and KRE5 is considered to be moderate. 472 

Further studies with simultaneous measurements (KE3 in particular) of all KEs in the same studies 473 

and following exposure to a wide range of stressors are still required. 474 
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 It is considered that the biological plausibility level of downstream KERs linking male 475 

production to reproduction impairment (KER6) and population decline (KER7) as moderate as 476 

described in the essentiality support and the supporting information. The empirical support is 477 

judged to be low, as only a two-generation reproduction test and population modeling using 478 

pyriproxyfen in D. magna are currently available.83,94 For the observation of population-level 479 

effects in daphnids, microcosm studies are encouraged. 480 

 481 

5.2.2. AOP2: JHR mediated pathway leading to male offspring induction 482 

 This AOP is the downstream part of AOP1. Hence, the assessment of KEs and KERs 483 

has been described in 5.2.1. Dissimilar to AOP1, KE4 (JHR activation) is assigned as the MIE 484 

for this AOP and a number of JHAs (e.g., pyriproxyfen, fenoxycarb, kinoprene, hydroprene, and 485 

diofenolan) are known to directly mediate this MIE.15-19,23,24,78,99,100 (Table S1). 486 

 487 

5.2.3. AOP3: JHR mediated pathway leading to reproduction decline. 488 

Essentiality of KEs 489 

This AOP describes JHR activation leading to population decline via perturbation to vtg 490 

expression. Essentiality of the JHR activation (MIE/KE4) leading to reductions in vtg expression 491 

(KE6) is supported by direct evidence where JHAs (i.e., fenoxycarb and pyriproxyfen) treatment 492 

caused downregulation of vtg expression.84,85,87 In addition, Kato et al.92 detected VTG as a 493 

component of major yolk protein complexes in the eggs at early development stages. Tokishita et 494 

al.84 identified sequences resembling known JH-responsive and ecdysone-responsive elements in 495 

the intergenic region of 2.6 kb between two vtgs (Dmagvtg1, Dmagvtg2), indicating that vtg 496 
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expression is involved in the JHR mediated pathway. However, there were a few contradictory 497 

experimental studies where no downregulation of vtg expression was observed with the JHA 498 

treatment.24,86 Therefore, the essentiality of KE4 leading to KE6 is considered as moderate. 499 

Transcription analysis of vtg was used in multiple studies as an early warning biomarker of 500 

chronic reproductive effects in daphnids.85,86,101–104 However, there are currently no experimental 501 

studies supporting that decrease in VTG protein concentration can lead to impaired reproduction 502 

in the daphnid study (Supporting information).104 Therefore, the essentiality of KE6 (VTG 503 

decrease) leading to KE8/AO2 (reproduction decrease) was determined as moderate. Therefore, 504 

a knockdown study or further in vivo assays with the measurement of both vtg expression and 505 

reproduction to demonstrate a statistically significant correlation between the two KEs will further 506 

strengthen the data for supporting this KE. 507 

 508 

Assessment of the KERs (KER8, KER9) 509 

It could be biologically plausible that vtg-related genes are one of the JHR responsive genes.84 510 

However, the regulation of VTG under different conditions has not been clarified yet. Many 511 

JHs/JHAs down-regulate vtg expression,84,85,87 whereas a few studies reported that the JHs/JHAs 512 

exposure to adult females showed no effect on vtg mRNA levels.24,86 A short-term exposure (<72 513 

h) in the latter studies and time-dependent modulation of vtg expression during the reproduction 514 

cycle, alternating with ecdysteroids, may explain this inconsistency. Inter-animal differences in 515 

vtg expression levels at different molt/reproductive stage could confound the JHA effects.86 516 

Generally, in insects, juvenoids and ecdysteroid hormones cooperatively control VTG synthesis; 517 

juvenoids typically induce VTG and ecdysteroids have either a stimulatory or suppressive effect, 518 
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depending upon the species.86,105,106 This JH and ecdysone cooperative regulation makes it 519 

difficult to obtain clear experimental support for KER8. Therefore, the biological plausibility of 520 

KER8 is considered moderate, and additional experiments with the efficient exposure period and 521 

transcriptional analysis at appropriate timing are needed. KER9 (from vtg decrease to 522 

reproduction decrease) may be biologically plausible based on analogy to accepted biological 523 

relationships in the other species. However, biological linkage supported by evidence has not 524 

been aquired yet in the daphnids. 525 

Empirical support for dose-response concordance of KER8 is not sufficient at present. 526 

Concerning temporality, vtg2 mRNA level was upregulated between 12 and 24 h after the 527 

previous molt and then downregulated between 24 and 48 h after the previous molt.86 This 528 

suggests that the peak expression of vtg occurs ~36 h after the egg development period in the 529 

ovary, which is later than that of JHR activation (24 h of ovarian egg development).70 For KER9, 530 

direct experimental evidence assessing both KE6 and KE8 in the same study are not currently 531 

available for JH/JHAs. Even in the studies evaluating the effects of several other chemicals (i.e., 532 

cyproterone acetate, acetone, triclosan, atrazine, and ecdysteroids 20-hydroxyecdysone and 533 

ponasterone A, heavy metals, miconazole, perfluoroethylcyclohexane sulfonate, and bisphenol 534 

A),86,101–104 the evidence for a cause-effect relationship between the two KEs against these 535 

chemicals is not conclusive (Supporting Information). Therefore, the empirical support for both 536 

KER8 and KE9 is considered low, and further studies simultaneously measuring the change in 537 

these events against JHs/JHAs exposure are required. 538 

 539 
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5.2.4. Quantitative understanding 540 

The quantitative understanding of each adjacent KERs is low because most of the KEs, 541 

particularly KEs in the JH synthesis pathway, were measured in a limited study with a few model 542 

chemicals, concentrations, and species (Table 3). In KER4 (JHR activation to dsx1 activation), 543 

the JHR activation measured by reporter gene assays has dose-response data for several chemicals, 544 

whereas dsx1 activation was measured in male offspring induced in short-day condition and only 545 

by fenoxycarb exposure (generally at 1 µg/L). The only non-adjacent KER: JHR activation (KE4) 546 

leading to male offspring induction (KE7) can be quantitatively discussed. The KER’s empirical 547 

support were high, and KER’s biological plausibility was moderate at present108. Considering 548 

demand for a regulatory application in Japan, it is desirable to develop a quantitative prediction 549 

of the proportion of male offspring (KE7) in reproduction based on chemical potency as JHR 550 

agonists (JHR activation, KE4). At present, the response–response relationship can be described 551 

only six chemicals between the two KEs; EC50 for JHR activation in reporter gene assays24,68,71 552 

and EC50 for male induction in vivo assay16 (Figure 3). The JH III, MF, fenoxycarb, and 553 

hydroprene caused response at the same level (slightly lower in KE7 than KE4) on the two KEs. 554 

However, pyriproxyfen and diofenolan are considerably more active in KE7 (two to five orders 555 

of magnitude lower). It is not clear whether these outliers are due to their chemical specificity or 556 

technical limit of the reporter assay where JHRE from T. castaneum, not from Daphnia species, 557 

were used at present. Based on the docking simulation, both chemicals are expected to show 558 

higher JHR activity than that showed in the reporter assay (Figure 1B). Therefore, further 559 

improvement of the reporter assay and testing of more chemicals are needed. Thus, the 560 

quantitative understanding of this KER is considered moderate. 561 
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 562 

5.3. Domain of applicability 563 

The biological domain of AOP1 is currently limited to D. pulex WTN6 strain and D. magna 564 

LRV13.2 and LRV13.5-1 strains because effect of iGluR antagonist/agonists in sex determination 565 

have been only reported in these species of which sex determination is sensitive to change in the 566 

photoperiod and response to iGluR agonist were different between D. pulex and D. magna.8.46.59,97 567 

Therefore, stressors such as short-day condition and several iGluR antagonists/agonists, might be 568 

valid only in the specific species or strain for AOP1. Moreover, further investigation of male 569 

offspring induction by other environmental stimuli (e.g., low temperature, food shortage, 570 

overpopulation)31 will identify other KE and pathway in the near future. 571 

For both AOP2 and AOP3, although the male offspring induction and reproduction 572 

decrease by JH agonists are conserved across broad cladoceran genera, such as Ceriodaphnia, 573 

Moina, Bosmina, and Oxyurella,17,20–22 in vitro assay for detecting JHR activation is currently 574 

limited to D. magna and D. pulex. In silico analysis of JHR, such as Sequence Alignment to 575 

Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/)108 and 576 

molecular docking simulations of JHAs with Met75 will help to explore the taxonomic domain 577 

and new stressors. The other chemicals reported to induce male offspring by in vivo assays are 578 

summarized in Table S1, but the JHR activation potency of these chemicals has only minimally 579 

been confirmed. Even in the same species, Oda et al.19,109 demonstrated different strains of D. 580 

magna had different sensitivity in the proportion of male offspring production by fenoxycarb. 581 

Some strains (e.g. D. magna LRV13.5-1 35) constantly produce male offspring even in the 582 

laboratory culturing condition, whereas the NIES strain that is used most of the KE4, KE5, KE7 583 
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studies, rarely produces males in response to environmental stress.31 To avoid false positive 584 

results in vivo assay detecting male offspring induction by chemicals, it is recommended to use a 585 

strain which rarely produces males in control treatment or understand the basic male offspring 586 

proportion of your strain in laboratory culturing condition and control treatment.  587 

 588 

5.4. Overall assessment of the AOP 589 

The KERs’ biological plausibility, empirical support, and quantitative understanding and the 590 

evidence supporting the KEs’ essentiality in an AOP are assessed together for an AOP’s overall 591 

assessment.34 For AOP1, even though all the KEs’ essentiality are moderate/high, the WoE for 592 

upstream KER1 and downstream KER6/KER7 are low, suggesting that further empirical support 593 

for understanding the molecular relationship between short-day condition (or the other stressors) 594 

to KE2 are expected to increase the level of WoE level for AOP1. For AOP2, the overall WoE 595 

for upstream KERs (KER4/KER5) is moderate, whereas it is low for the downstream KERs 596 

(KER6/KER7) as described forAOP1. The quantitative understanding of KER6 (KE7→AO1) 597 

will be required to consider its potential regulatory application. For AOP3, both the evidence 598 

supporting KEs and KERs are still moderate/low, and the further biological understanding of the 599 

pathway is needed. 600 

 601 

5.5. Regulatory application of the AOPs 602 

Male offspring induction by chemical-mediated disruption of JH signaling is expected to be used 603 

as a new endpoint in a regulatory context (such as BPR and PPPR28) to identify endocrine 604 

disruptors in invertebrates (i.e., chemicals with JH activity), and the AOPs can help to develop 605 
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tiered testing strategies. The Ministry of the Environment of Japan developed a two-tier 606 

framework for testing and assessing chemical ED effects on aquatic organisms.110,111 The JH and 607 

ecdysteroidal activities are also included in the framework (Figure S4).110,111 Reporter gene assay 608 

for detecting JHR activation is assigned as Tier 1 with ecdysone receptor activation assay112 (to 609 

assess actions to endocrine systems) in vitro assays.68,71,77 The results of in vitro assays and 610 

literature review will be used to prioritize chemicals for in vivo testing. As Tier 1 in vivo assay, 611 

short-term JH Activity Screening Assay (JHASA)23 was developed based on OECD TG 211 612 

Daphnia magna Reproduction Test Annex 7,25 which is assigned as Tier 2 (to characterize adverse 613 

effects) in vivo. Based on the temporal concordance of KEs between KE4 to KE7 as described in 614 

5.2.3, the JHASA starts exposure from matured adult and only observes offspring from the second 615 

brood after exposure to shorten test duration and reduce laborious work for identification of all 616 

offspring sex by microscope observation.23 It is currently proposed as a new OECD test guideline 617 

(a ring test report is in preparation). The JHASA and OECD TG211 Annex 7 are also suggested 618 

as Level 3 and Level 4 in vivo assays, respectively, providing data about the selected endocrine 619 

mechanism(s)/pathway(s) in the OECD Conceptual Framework for Testing and Assessment of 620 

Endocrine Disrupting Chemicals.27 621 

Because the JHASA still requires approximately 5–7 days, a suite of high-throughput 622 

screening methods for MIEs and upstream KEs would be a utility to screen the high number of 623 

chemicals. The quantitative understanding of the KERs is required to use an assay for upstream 624 

KEs as an alternative to assays for downstream KEs. As discussed in 5.2.4, the quantitative 625 

understanding between JHR activation and male offspring induction is moderate. More dose-626 

response data of target chemicals is required to develop a predictive model between the two KEs. 627 
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Besides, the in silico JHR binding model can facilitate the screening of JHR agonists, and more 628 

training sets of chemicals are needed to improve the model’s predictive power. Implementation 629 

of these in silico and in vitro tools and knowledge reviewed herein will help to develop future 630 

IATA initiatives. 631 

 632 

6. Future Directions   633 

Although in silico, in vitro, and in vivo assays to detect JHR agonists have been developed, 634 

detection methods for chemicals disrupting the upstream JH synthesis pathway (KE1-KE3) have 635 

not been established. Abe et al.113,114 found that several macrolide pesticides (e.g., ivermectin) and 636 

the secondary metabolites of plants (plant essential oil component) induced male offspring in 637 

JHASA but did not show JHR activation in the reporter assay developed by Tanaka et al.71 638 

(unpublished data). These compounds may stimulate an upstream JH synthesis pathway leading 639 

to JH titer increase or involve in transcriptional regulation of dsx (KE5). To confirm the former 640 

hypothesis, KE1–KE3 need to be investigated in the daphnids exposed to these candidate 641 

compounds. Because the KE1 and the KE2 were only observed in male offspring producing D. 642 

pulex stimulated by photoperiod condition, further investigation of various candidate chemicals 643 

will probably identify other important upstream KEs in the JH synthesis disrupting pathway. 644 

Moreover, new assessment approaches that can correctly detect the effect of anti-JH 645 

using in vivo, in vitro, and in silico methods are required to complement the testing and assessment 646 

framework. Most JH antagonists developed/discovered as IGRs (e.g. precocenes, 647 

fluoromevalonate, compactin, and imidazoles) inhibit the JH synthesis pathway in insects by 648 
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either disrupting enzyme action or injuring the CA cells.115 The JHR antagonists were also 649 

identified from plant extract using the mosquito two-hybrid yeast assay.116 As in vivo assay, 650 

precocious metamorphosis-inducing activity using the silkworm (B. mori) larva is used to detect 651 

anti-JH action in insects.117 In the daphnids’ case, repression of male offspring production 652 

compared with that in an unexposed condition (e.g., D. pulex WTN6 strain) and has the potential 653 

to be used as an endpoint of anti-JH in vivo assay. 654 

This literature review found that several events in insects’ JH system were not 655 

observed in daphnids, suggesting that using only daphnids could not detect the insect-specific 656 

disruptors in the JH systems. Understanding the evolutionary diversities and common principles 657 

underlying the JH systems among arthropods is still needed for further development of a robust 658 

testing approach. It would also contribute to expand the application domain of the current set of 659 

AOPs. 660 

 661 

LIST OF ABBREVIATIONS 662 

AO  adverse outcome 663 

AOP  adverse outcome pathway 664 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 665 

BIM bisindolylmaleimide IV 666 

bHLH-PAS basic helix-loop-helix-Period-aryl hydrocarbon receptor nuclear 667 

translocator-single-minded 668 

bZIP  basic-leucine zipper 669 
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CA  corpora allata 670 

CoA  co-enzyme A 671 

CYC  cycle 672 

CYP15A1  cytochrome p450 15A1 673 

DAPALR  doublesex1 alpha promoter-associated long RNA 674 

dsx1  doublesex1 675 

EAGMST  extended advisory group on molecular screening and toxicogenomics 676 

EDC  endocrine disrupting chemical 677 

FAMeT  farnesoic acid O-methylfransferase 678 

FPP  farnesyl diphosphate 679 

GC-MS  gas chromatography-mass spectrometry 680 

IATA  integrated approaches to testing and assessment 681 

iGluR  ionotropic glutamate receptor 682 

IGR  insect growth regulator 683 

JH  juvenile hormone 684 

JHA  juvenile hormone analog 685 

JHAMT  juvenile hormone acid O-methylfransferase 686 

JHASA  juvenile hormone activity screening assay 687 

JHR  juvenile hormone receptor 688 

JHRE  juvenile hormone response element 689 

KE  key event 690 

KER  key event relationship 691 
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Kr-h1  krüppel-homolog 1 692 

LC-MS  liquid chromatography-mass spectrometry 693 

LOEC  lowest observed effect concentration 694 

Met  methoprene-tolerant 695 

MF  methyl farnesoate 696 

MIE  molecular initiating event 697 

NMDA  N-methyl-D-aspartic acid 698 

NMDAR  N-methyl-D-aspartic acid receptor 699 

NBQX  2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline 700 

OECD  organization for economic co-operation and development 701 

PKC  protein kinase C 702 

RT-PCR  reverse transcription-polymerase chain reaction 703 

SeqAPASS sequence alignment to predict across species susceptibility 704 

SRC  steroid receptor coactivator 705 

TFG-β  transforming growth factor β 706 

vtg  vitellogenin 707 

WoE  weight of evidence 708 
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A. Homology models of Met PAS-B domain in D. pulex (dark cyan) and D. magna (orange). 1074 

Nonconserved residues are shown as sticks. 1075 

B. Relationships between U_dock values and EC50 values of in vitro assays for D. pulex and D. 1076 

magna. Red and blue plots indicate the values for D. pulex and D. magna, respectively. 1077 

 1078 

Figure 2 1079 

Adverse outcome pathway for the JH synthesis and the JHR mediated disruption triggering male 1080 

offspring induction and population decline in Daphnia species. MIE, molecular initiating event; 1081 

KE, key event; AO, adverse outcome; iGluR, ionotropic glutamate receptor; PKC, protein kinase 1082 

C; JHAMT, juvenile hormone acid O-methyltransferase; JH, juvenile hormone; JHR, juvenile 1083 

hormone receptor; dsx1, double sex 1. 1084 

 1085 

Figure 3 1086 

The relationship of EC50 for the JHR activation (KE4) in reporter gene assays 24,66,71 and for male 1087 

induction (KE7) in OECD TG211 Annex 7.16,18 1088 

 1089 

Table 1 1090 

Pharmacological assays summary using daphnids with photoperiod-dependent sex determination 1091 

conditions. 1092 

 1093 

Table 2 1094 

Support for KEs essentiality and their detection methods. 1095 
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KE, key event; AO, adverse outcome; iGluR, ionotropic glutamate receptor; JHAMT, juvenile 1096 

hormone acid O-methyltransferase, JH, juvenile hormone; JHR, juvenile hormone receptor; dsx1, 1097 

double sex 1 1098 
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Table 3 1100 

The weight of evidence (WoE) assessment of Key Event Relationships’ (KERs). 1101 
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