Accepted Manuscript

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.est.1c03047

 Katja M. Shimko, Jake W. O'Brien, Jiaying Li, Benjamin J. Tscharke, Lance Brooker, Phong K. Thai, Phil M. Choi, Saer Samanipour, and Kevin V. Thomas. 2022. In-Sewer Stability Assessment of Anabolic Steroids and Selective Androgen Receptor Modulators. Environmental Science & Technology. 56(3), 1627–1638.

It is recommended to use the published version for citation.

2	androgen receptor modulators
3	
4	Katja M. Shimko ^a *, Jake W. O'Brien ^a , Jiaying Li ^a , Benjamin J. Tscharke ^a , Lance Brooker ^b , Phong K. Thai ^a ,
5	Phil M. Choi ^{a,c} , Saer Samanipour ^{a,d,e} and Kevin V. Thomas ^a
6	
7	^a Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20
8	Cornwall Street, Woolloongabba QLD 4102, Australia
9	^b Australian Sports Drug Testing Laboratory (ASDTL), National Measurement Institute (NMI), 105 Delhi
10	Road, North Ryde NSW 2113, Australia
11	^c Water Unit, Health Protection Branch, Queensland Health, 15 Butterfield Street, Herston QLD 4006,
12	Australia
13	^d University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, The
14	Netherlands
15	^e Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
16	
17	Corresponding author: Katja M. Shimko. Email: k.shimko@uq.edu.au; Tel.: +61 (0)431 044 876
18	
19	Author's ORCID: Katja M. Shimko: 0000-0001-5644-117X; Jake W. O'Brien: 0000-0001-9336-9656;
20	Jiaying Li: 0000-0002-2132-3330; Benjamin J. Tscharke: 0000-0002-3292-3534; Lance Brooker: 0000-
21	0001-9661-9323; Phong K. Thai: 0000-0003-0042-3057, Phil M. Choi: 0000-0002-0535-8197; Saer
22	Samanipour: 0000-0001-8270-6979; Kevin V. Thomas: 0000-0002-2155-100X

1 In-sewer stability assessment of anabolic steroids and selective

23 TOC/Abstract Art

25 Abstract

26 Wastewater-based epidemiology is a potential complementary technique for monitoring the use of 27 performance- and image-enhancing drugs (PIEDs), such as anabolic steroids and selective androgen 28 receptor modulators (SARMs), within the general population. Assessing in-sewer transformation and 29 degradation is critical for understanding uncertainties associated with wastewater analysis. An 30 electrospray ionisation liquid chromatography mass spectrometry method for the quantification of 59 31 anabolic agents in wastewater influent was developed. Limits of detection and limits of quantification 32 ranged from 0.004 – 1.56 μ g/L and 0.01 – 4.75 μ g/L, respectively. Method performance was 33 acceptable for linearity (R^2 >0.995, few exceptions), accuracy (68-119%), and precision (1-21%RSD), 34 and applicability was successfully demonstrated. To assess the stability of the selected biomarkers in 35 wastewater, we used laboratory-scale sewer reactors to subject the anabolic agents to simulated 36 realistic sewer environments for 12 hours. Anabolic agents, including parent compounds and 37 metabolites, were spiked into freshly collected wastewater that was then fed into three sewer reactor 38 types: control sewer (no biofilm), gravity sewer (aerobic conditions), and rising main sewer (anaerobic 39 conditions). Our results revealed that while most glucuronide conjugates were completely 40 transformed following 12h in the sewer reactors, 50% of the investigated biomarkers had half-lives 41 longer than four hours (mean residence time) under gravity sewer conditions. Most anabolic agents 42 were likely subject to biofilm sorption and desorption. These novel results lay the groundwork for any 43 future wastewater-based epidemiology research involving anabolic steroids and SARMs.

44

Keywords: in-sewer degradation, performance- and image-enhancing drugs (PIEDs), wastewater
analysis, wastewater-based epidemiology (WBE), sewage

47

48 Synopsis

Fate of 59 anabolic agents was investigated using laboratory-scale sewer reactors to understandbiomarker transformation and sorption in sewage systems.

51 1 Introduction

52 Performance- and image-enhancing drug (PIED) use is an emerging global public health issue¹⁻³. 53 Several negative side-effects on mental and physical health have been reported, e.g., depression, aggressive behaviour, liver toxicity, and heart issues⁴⁻⁷. Their use is not restricted to professional and 54 55 amateur athletes, and easy access through online markets assists in misuse of these drugs within the general population¹. The prevalence of PIED use, in particular anabolic agent use, among the general 56 57 community is currently only being estimated and monitored via survey, anti-doping testing, and 58 seizure data (e.g., for a review see⁸). These approaches are single point-in-time measurements with 59 small sample sizes and additional limitations, including participation, honesty, and knowledge about 60 the substances that are consumed (i.e., dosages and purity), or testing of a specific subpopulation.

61 Wastewater-based epidemiology (WBE) is a widely used tool to estimate chemical consumption 62 (e.g., for estimating illicit drug consumption within the general population), that may have a potential 63 application in PIED monitoring⁹⁻¹². For a chemical to be a suitable health biomarker for WBE, the 64 chemical must meet a range of criteria including:

65 1) being excreted via urine in consistent amounts;

66 2) having a unique source from human metabolism;

67 3) being detectable in wastewater; and

68 4) being stable in wastewater¹³.

Respectively, these criteria allow researchers to 1) back-calculate excreted mass loads as the loads will be proportional to the user population, and metabolites will be soluble in the water phase; 2) know the appropriate target metabolite, that the drugs have passed through the human body and not from other sewer inputs; 3) ensure that the target analyte is present in high enough concentrations amenable to analysis and; 4) know that the amount in the sample reflects total use or if it reflects part of total use due to degradation in the sewer network¹³.

Criteria 1) and 2) have been assessed through anti-doping testing and research related to this
 field. However, thresholds and ratios of anabolic agents and their metabolites cannot be assessed and

77 applied to wastewater analysis as they are for anti-doping testing of individuals. Studies that have 78 investigated synthetic anabolic agents in wastewater, criterion 3), often focussed on analysing parent chemicals as opposed to metabolites^{10-12, 14}. Backe et al analysed steroid metabolites in wastewater, 79 80 but could not confirm if detected biomarkers such as boldenone were excreted naturally or formed in the sewer⁹. Criterion 4 has been assessed for in-sample stability of anabolic steroids only (post-81 collection)^{9, 10, 12}, but not for selective androgen receptor modulators (SARMs). No studies have thus 82 far investigated the stability of both anabolic steroids and SARMs, two chemically very diverse 83 84 subgroups belonging to the group of anabolic agents within PIEDs¹⁵, in the sewage system. The in-85 sewer stability and detectability, especially of SARMs, requires investigation as it is the first step to 86 determine whether WBE is a suitable approach for monitoring PIED use.

87 In-sewer degradation is dependent on physical and chemical properties of the wastewater, as well as the in-sewer bioactivity and wastewater residence time^{16, 17}. Wastewater is transported 88 89 through a network of infrastructure, flowing both under gravity (gravity sewers (GS)) and under 90 pressure (rising main sewers (RM)). Gravity sewers are usually partially filled with wastewater under 91 aerobic conditions, while RM are pressurised pipes that are completely filled and under anaerobic 92 conditions. Biofilm is present on the inside of the pipes and the ratio of biofilm area can vary at 93 different points in the network due to pipe diameter and water level. Biofilm-area-to-wastewater-94 volume ratio (A/V ratio) is dependent on the size of the pipes, as well as the level of wastewater 95 flowing through. The hydraulic retention times (HRTs) and A/V ratios vary in sewage systems with 96 dynamic flows and wastewater conditions. Resident times and A/V ratios can be controlled in 97 laboratory-scale sewer reactors, which can be used to estimate the in-sewer stability of biomarkers.

98 The aim of this study was to assess the suitability of 59 anabolic agent biomarkers for WBE 99 applications by determining their in-sewer stability, using laboratory-scale sewer reactors, under rising 100 main sewer, gravity sewer and control reactor (no biofilm) sewer conditions. This would improve our 101 understanding of some of the uncertainties associated with monitoring community use of anabolic 102 agents through WBE.

103 2 Materials and methods

104 2.1 Materials and reagents

- 105 Details on biomarkers investigated in this study and where analytical standards and reagents were
- sourced can be found in Table 1 and in the Supplementary Information (SI).

108 Table 1. Biomarkers investigated, how the metabolites are referred to in this study, LogP values (predicted using the Molinspiration property calculation

service (http://www.molinspiration.com)), analytical method, and their spiking level in this study in µg/L. Analytical method A: mobile phase A – 0.4 mM

ammonium fluoride (NH₄F) in 95:5 ultrapure water/methanol (v/v); mobile phase B – 0.4 mM NH₄F in 95:5 methanol/ultrapure water (v/v). Analytical method

111 B: mobile phase A – 0.1% acetic acid in 95:5 ultrapure water/methanol (v/v); mobile phase B – 0.1% acetic acid in 95:5 methanol/ultrapure water (v/v). N/A:

112 not available.

Biomarker	Metabolite name	CAS number	LogP	Analytical method	Spiking level (µg/L)
Steroids and hormones					
Boldenone		846-48-0	3.22	A	5
Boldenone glucuronide		827019-65-8	1.39	В	5
17β-Hydroxy-5β-androst-1-en-3-one	Boldenone M1	10529-96-1	3.41	А	10
4-Chloro-androst-4-en-3α-ol-17-one	Clostebol M1	51348-73-3	3.58	А	13.3
2α-Methyl-5α-androstan-3α-ol-17-one	Drostanolone M1	6961-54-2	3.9	А&В	10
2α-Methyl-5α-androstan-3α-ol-17-one glucuronide	Drostanolone M1 glucuronide	361432-78-2	2.08	В	8
Estrone		53-16-7	3.24	А	8
Fluoxymesterone		76-43-7	2.76	А	8
9α-Fluoro-17α-methyl-androst-4-en-	Fluoxymesterone M1	148505-57-1	2.03	А	10
3α,6β,11β,17β-tetra-ol					
9α-Fluoro-17,17-dimethyl-18-nor-androst-4,13-	Fluoxymesterone M2	3863-16-9	3.53	A	10
diene-11β-ol-3-one					
1α-Methyl-5α-androstan-3α-ol-17-one	Mesterolone M1	3398-67-2	3.9	А	10
Methyl-1-testosterone		65-04-3	3.85	А	10
Metandienone		72-63-9	3.67	А	5
17-Epimetandienone	Metandienone M1	33526-40-8	3.67	А	10
6β-Hydroxymetandienone	Metandienone M2	33526-41-9	2.75	A	10
17β-Methyl-5β-androst-1-ene-3α,17α-diol	Metandienone M3	132830-78-5	4.04	A & B	10
(Epimetendiol)					
Methasterone		3381-88-2	4.35	A	8
2α,17α-Dimethyl-5α-androstane-3α,17β-diol	Methasterone M1	1173998-58-7	4.54	A & B	10

Biomarker	Metabolite name	CAS number	LogP	Analytical method	Spiking level (µg/L)
Metenolone		153-00-4	3.95	А	5
1α-Methylene-5α-androstan-3α-ol-17-one	Metenolone M1	3398-66-1	3.74	А	13.3
Methylstenbolone		6176-38-1	4.4	А	5
Methyltestosterone		58-18-4	3.69	А	10
17α-Methyl-5α-androstane-3α,17β-diol	Methyltestosterone M1	641-82-7	4.06	A & B	10
17α-Methyl-5β-androstane-3α,17β-diol	Methyltestosterone M2	641-84-9	4.06	A & B	10
Nandrolone		434-22-0	3.0	А	8
19-Norandrosterone		1225-01-0	3.18	А	10
19-Norandrosterone glucuronide		294213-86-8	1.35	В	10
19-Noretiocholanolone		33036-33-8	3.18	А	13.3
19-Noretiocholanolone glucuronide		294213-87-9	1.35	В	10
17α-Ethyl-5α-estrane-3α,17β-diol	Norethandrolone M1	6961-15-5	4.32	A & B	10
17α-Ethyl-5β-estrane-3α,17β-diol	Norethandrolone M2	31658-50-1	4.32	A & B	10
17α-Hydroxyethyl-5β-estrane-3α,17β-diol	Norethandrolone M3	1245704-40-8	3.08	А	10
Progesterone		57-83-0	3.81	А	5
Oxandrolone		53-39-4	3.72	А	15
17-Epioxandrolone	Oxandrolone M1	26624-15-7	3.72	А	10
Testosterone		58-22-0	3.25	А	5
Androstenedione		63-05-8	3.06	A	10
Androsterone		53-41-8	3.43	A & B	13.3
Androsterone glucuronide		1852-43-3	1.6	В	15
Epitestosterone		481-30-1	3.25	A	10
Etiocholanolone		53-42-9	3.43	A & B	13.3
3'-Hydroxy Stanozolol	Stanozolol M1	125709-39-9	4.33	А	10
3'-Hydroxy Stanozolol glucuronide	Stanozolol M1 glucuronide	361432-14-9	2.16	A & B	5
Trenbolone		10161-33-8	2.63	А	10
17-Epitrenbolone	Trenbolone M1	80657-17-6	2.63	А	10
Dehydrochlormethyltestosterone (DHCMT)		2446-23-3	4.0	Α	8
6β-Hydroxy-dehydrochlormethyltestosterone	DHCMT M1	25486-01-5	3.09	А	10
SARMs and other anabolic agents					
Andarine		401900-40-1	2.6	A & B	2
Cardarine		317318-70-0	5.85	A & B	2

Biomarker	Metabolite name	CAS number	LogP	Analytical method	Spiking level (µg/L)
GW 501516 Sulfone	Cardarine M1	1206891-27-1	4.29	A & B	2
GW 501516 Sulfoxide	Cardarine M2	1206891-26-0	4.26	A & B	10
Clenbuterol		37148-27-9	2.79	А	2
Enobosarm		841205-47-8	2.93	А	8
Ligandrol		1165910-22-4	3.29	A & B	5
Stenabolic		1379686-30-2	4.78	А	5
Ethyl N-(5-nitro-2-methylthiophene)-3-	Stenabolic M2	N/A	2.46	А	10
aminomethylpyrrolidine-1-carboxylate					
N-[(4-Chlorophenyl)methyl]-5-nitro-2-	Stenabolic M6	1384516-10-2	3.56	A & B	10
thiophenemethanamine hydrochloride					
Testolone		1182367-47-0	3.02	A & B	5
YK-11		1370003-76-1	4.61	A	9

114 2.2 Instrument method (LC-MS/MS)

Analytes of interest were optimised by direct infusion into a Sciex QTRAP® 6500+ mass spectrometer (MS) to determine declustering potential, collision energy, and collision exit cell potential for individual precursor/product transitions (Table S1.). Positive and negative electrospray ionisation (ESI) modes were investigated for all compounds. The optimised MS parameters were: temperature 530 °C, curtain gas 30 psi, IonSpray voltage 4500 V and -4500 V, and Ion Source Gas 1 and 2, 80 psi.

121 The Shimadzu Nexera liquid chromatography (LC) conditions were: flow rate 0.4 mL/min, oven temperature 45 °C, autosampler temperature 4 °C, and injection volume 8 μL. The column used was a 122 123 Kinetex[®] 1.7 µm C18 100 Å 100 x 2.1 mm, with a SecurityGuard[™] ULTRA C18 2.1 mm guard column 124 (Phenomenex, Lane Cove West, NSW, AU). The time program was as follows: 0-0.5 min 20% B, 0.5-1.5 125 min linear increase to 45% B, 1.5-15 min linear increase to 75% B, 15-16 min linear increase to 100% 126 B, 16-19.9 min held at 100% B, 19.9-20 min linear decrease to 20% B, and finally 20-24 min held at 127 20% B. To obtain optimal sensitivity for each biomarker, two separate LC methods (method A, method 128 B) were required.

129 2.2.1 Method A

The aqueous mobile phase for method A was 0.4 mM ammonium fluoride (NH₄F) in 95:5 ultrapure water/methanol (v/v). Mobile phase B was 0.4 mM NH₄F in 95:5 methanol/ultrapure water (v/v). Method A contained 54 out of 59 analytes, in addition to 14 isotopically labelled standards (Table 1, Table S2). For compounds which were analysed in both methods, for simplicity, we used the calculated concentrations based on this method for the in-sewer experiments.

135 2.2.2 Method B

Mobile phases for method B were: 0.1% acetic acid in 95:5 ultrapure water/methanol (v/v) and 0.1% acetic acid in 95:5 methanol/ultrapure water (v/v). Twenty-six out of 59 analytes and three internal standards were analysed with method B.

139 2.3 Instrument method performance

140 Prior to analysis of the in-sewer samples, performance of the instrument methods including 141 linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ) was assessed, 142 following The International Council for Harmonisation of Technical Requirements for Pharmaceuticals 143 for Human Use (ICH) guidelines¹⁸, to ensure method applicability. The instrument method 144 performance assessment was employed as a proof of concept to determine if the methods are suitable 145 for direct injection analysis of steroids and SARMs spiked into wastewater influent, and to investigate 146 criterion 3), i.e., detectability of these biomarkers in wastewater matrix. Raw wastewater influent was 147 collected and immediately preserved with hydrochloric acid (HCl) to pH 2. Calibration solutions in HCl-148 preserved (pH 2) and filtered (0.2 µm Regenerated Cellulose) raw wastewater were prepared at 0.08, 149 0.16, 0.31, 0.63, 1.25, 2.5, 5, 10, and 20 μ g/L (20% methanol (v/v)). Weighting of 1/x was applied to 150 determine linearity. Precision and accuracy for each compound were determined at low, medium and 151 high-level spikes (n=8), by dividing the standard deviation by the mean then multiplying with 100 and 152 by dividing the mean by the expected value and multiplying with 100, respectively. Low level spikes 153 were 0.08, 0.31 and 1.25 μ g/L for method A, and 0.08, 0.63 and 1.25 μ g/L for method B. Medium and 154 high-level spikes for both methods were 5 μ g/L and 10 μ g/L, respectively. LOD and LOQ were 155 determined by multiplying the standard deviation of the response (n=8) with 3.3 and 10, respectively, 156 and dividing that value by the slope of the calibration curve.

Subsequently, a second performance assessment experiment was conducted to determine accuracy and precision for analytes with LOQs lower than 0.08 μ g/L for method A. Calibration solutions ranging from 0.0025 – 20 μ g/L (N=14) were prepared in HCl-preserved and filtered wastewater and 20% methanol (v/v). Low level accuracy and precision were determined at 0.01 (n=8) and 0.04 μ g/L (n=7). Method performance was acceptable for linearity (*R*²>0.995, few exceptions), accuracy (68-119%), and precision (1-21 %RSD) (details in SI and Table S3).

163 2.4 Quality assurance and control

164 A calibration series in HCl-preserved and filtered wastewater influent ranging from 0.08 - 20 μ g/L (N=9) was run at the beginning of each batch (20% methanol (v/v)). One calibration solution was 165 166 analysed every 10 injections. Acidified ultrapure water spiked with 7 μ g/L isotopically labelled 167 standards was injected every 20 samples and served as a blank (BLK). The equivalent to a non-168 extracted side spike (NESS) was prepared by fortifying HCl-acidified ultrapure water with 5 μ g/L native analytes and 7 μ g/L internal standards (7.4% methanol (v/v)). A spike (SPK) was also prepared every 169 170 20 samples to calculate analyte recovery. The SPK was prepared by dividing a wastewater sample into 171 two aliquots and fortifying one with 5 μ g/L natives (10% methanol (v/v)). Recovery was calculated by 172 subtracting the concentration of the analyte in the wastewater sample from the concentration of the 173 SPK and dividing that by the NESS. Duplicates (DUP) were prepared every 8-12 samples.

174 2.5 Sewer reactor study

175 2.5.1 The sewer reactors

To investigate the stability of anabolic agents in realistic sewer environments, laboratory sewer 176 reactors with demonstrated representative biological activity of real sewers were used in this study¹⁹. 177 178 These comprised of a control reactor (CR), a gravity sewer reactor (GS), and a rising main reactor (RM). 179 The GS and RM reactors have been operated for multiple years under aerobic and anaerobic 180 conditions, respectively. Each reactor has a volume of 0.75 L, and the RM reactor has a small buffer 181 container over the lid with a volume of 70 mL to prevent entry of oxygen during to wastewater sampling. Mature biofilms were cultivated inside the reactors showing strong biological activities, 182 183 with resulting A/V ratios of 50 m^2/m^3 in the GS and 72.5 m^2/m^3 in the RM reactor. To maintain the 184 reactors, they are fed with domestic sewage (typical sewage parameters; see SI) through a peristaltic 185 pump (Masterflex 7520-47) every 6 hours. Homogeneous distribution in reactors was ensured by 186 continuous mixing (250 rpm) with a magnetic stirrer. The CR was subjected to regular cleaning to 187 ensure the absence of biofilm.

188 2.5.2 Study design

189 Batch tests were conducted to measure the biotic and abiotic transformation of biomarkers in sewer reactors. A total of three isolated experiments (week 1, week 2 and week 3) were conducted, 190 191 each in triplicate (day 1, day 2, and day 3), for the purpose of separating parent compounds and 192 metabolites, as well as glucuronides from their non-glucuronidated forms. Where possible, 193 stereoisomers were also separated into different experiments. Generally, parent analytes and 194 glucuronides were spiked in week 2 (day 1, 2 and 3). Metabolites were spiked in week 1 (day 2 and 3), 195 as well as week 3 (day 1), and cardarine M1 was spiked in week 3 (day 1, 2 and 3; Table S2). The spiked 196 wastewater was completely drained after each experimental day and was replaced 3-4 times between 197 consecutive experimental days. Between different experimental weeks, wastewater was replaced 198 over 20 times over 5 days. Acesulfame (stable under all conditions) and paracetamol (unstable in GS 199 and RM) were included in the instrument method as an additional quality control, as these biomarkers 200 have been investigated in the literature, occur at measurable levels in wastewater¹⁶, and have 201 previously been proposed as control chemicals²⁰.

202 Before each batch test, newly collected domestic wastewater (3L at room temperature) was 203 spiked with the investigated biomarkers (for spiking levels see Table 1). After rapid mixing, the wastewater was fed into the three drained reactors through a peristaltic pump. Subsequently, samples 204 205 were taken from each reactor at fixed time intervals of 0, 0.5, 1, 2, 4, 6, 8, and 12 hours after spiking. 206 After collection, 1 mL was filtered, HCI-preserved to pH 2 in 2 mL glass amber vials, and frozen 207 immediately at -80°C until sample preparation for analysis (around 4 months). Biological conditions in 208 the GS and RM were monitored by measuring the dissolved sulfur species, methane, pH and 209 temperature. The sulfide and methane production rates are standard parameters indicative of 210 biological activitiy in sewers. They were determined by measuring changes in dissolved sulfide and 211 methane in the first hour HRT after spiking (see SI).

212 2.5.3 Sample preparation

Samples were defrosted, and 250 μ L was aliquoted into a glass amber vial, spiked with internal standards to a final concentration of 7 μ g/L (2.7% methanol (v/v)), and vortexed. This was then divided into two separate vials with glass inserts, one for analysis using method A, one for method B. The vials were kept at -80°C until analysis.

Isotopically labelled standards were available for 14 of the 59 analytes. To adjust for potential variations in the instrument run such as injection volume, available isotopically labelled standards were allocated to all analytes in this study. Isotopically labelled standard allocations were determined by either structural similarity or retention time (Table S2.).

221 2.6 Statistical analysis

222 Sewer reactor data were fitted using three kinetic models – zero order kinetics (simple linear 223 regression), first order kinetics (one-phase exponential decay/association), and exponential two-224 phase decay via MatlabR2015b (Higham, D. J., & Higham, N. J. (2016). MATLAB guide. Society for 225 Industrial and Applied Mathematics; equations in SI). In order to make sure that the generated model 226 parameters were meaningful, a non-negativity condition was set on the final concentrations. 227 Additionally, we set a maximum of 300% of mass reduction for the fast reaction fraction of the two-228 phase model. This reduction in the degrees of freedom enabled us to generate comparable results 229 across the three model orders. To select the model order, we used the combination of the regression 230 coefficient and the root mean square error (RMSE) of the model. In other words, the model with the 231 highest R^2 and the lowest RMSE was selected as the one describing the data the best. Additionally, the 232 confidence interval of each model parameter, using an alpha of 0.05 was calculated using the QR 233 decomposition of Jacobian matrix, degrees of freedom, and the RMSE.

The curves (Figure 1.) were plotted in accordance with the best-fit regression model of zero order kinetics, 1st order kinetics, and two-phase decay using GraphPad Prism (version 8.4.1).

236 LogP values were predicted using the Molinspiration property calculation service237 (http://www.molinspiration.com).

238 3 Results and discussion

239 3.1 LC-MS/MS methods

240 3.1.1 Method A and B

Separation of 57 analytes was achieved, including structural and stereoisomers, parents and metabolites. Only two compounds, methyltestosterone M1 and norethandrolone M2, could not be separated on the C18 column as they share the same exact mass, multiple reaction monitoring (MRM) transitions, and retention time. Therefore, these metabolites were quantified together in this study and their results should be interpreted accordingly. It was possible to separate these two analytes on a phenyl-hexyl column, but this column did not sufficiently separate stereoisomers (data not shown).

247 3.1.2 Quality assurance and control

Mean recoveries (n=4) ranged from 42-166%, with 47 analytes being within the acceptable range of 80-120%. Mean duplicate differences ranged from 0.8-14.5% across all 59 biomarkers (Table S4). For the majority of biomarkers with recoveries below 80% and above 120%, internal standards of other native chemicals were used, which may have had different matrix effects as they were not exact matches. QC accuracy during the batches was between 79-115%. No carryover was observed in the instrument blanks. Instrument performance, including sensitivity, remained stable throughout all runs.

- **255** 3.2 In-sewer study
- **256** 3.2.1 Biological activity

During the study, the sewer reactors presented strong biological activities under natural temperature conditions (week 1: 22.1±0.6°C; week 2: 21.9±0.6°C; week 3: 21.4±0.4°C). Wastewater pH remained consistent during the batch tests (week 1: CR 7.63±0.13, GS 7.29±0.09, RM 7.17±0.08; 260 week 2: CR 7.50±0.18, GS 7.13±0.08, RM 7.06±0.08; week 3: CR 7.58±0.18, GS 7.27±0.08, RM 261 7.16±0.08). Stronger activities of sulfate reducing bacteria and methanogens were found in the RM 262 reactor as indicated by the evident sulfide and methane productions (sulfide: week 1: 5.56; week 2: 263 4.68; week 3: 5.29 mgS/L/h; methane: week 1: 25.86; week 2: 23.10; week 3: 19.94 mgCOD/L/h). 264 These activities were similar to the biological conditions in diverse sewer systems, including sewer reactors, pilot sewer systems, and real rising main pipelines^{19, 21}. Measured production of dissolved 265 266 sulfide and methane were lower in the GS reactor (sulfide: week 1: 1.70; week 2: 1.70; week 3: 1.76 267 mgS/L/h; methane: week 1: 4.02; week 2: 4.38; week 3: 4.91 mgCOD/L/h). This could be attributed to 268 the presence of oxygen and the transfer of H_2S and methane from the wastewater phase to air. No 269 activities were detected in the biofilm-absent CR.

270 3.2.2 Initial concentrations in the reactors

271 Generally, analyte concentrations in the t₀ sample in all three reactor types differed from the 272 spiked theoretical concentrations (Figure S1). The t₀ sample is the first sample that was collected 273 immediately after feeding the spiked wastewater into the reactors. The mean biomarker 274 concentrations (n=3) of t₀ in each reactor type were divided by the theoretical spiked concentrations 275 and expressed as CR%, GS% and RM%. Mean and median (N=59) were 78% and 82% for CR, 67% and 276 70% for GS, and 51% and 49% for RM. In addition to the instrument method variability, the mean 277 initial concentration in the CR (and both GS, RM reactors) would have likely been influenced by sorption to the suspended solids/particulate matter²². Furthermore, the additional decline in % of 278 279 initial concentration in wastewater from the GS and RM reactors, compared to the biofilm-free 280 reactor, may not be a result of immediate transformation or degradation but could instead be the 281 result of potential increased matrix suppression with increasing biofilm and/or rapid sorption to the 282 biofilm. The latter is supported by the fact that most of these analytes are moderately hydrophobic 283 and have logP values >2.5. Further support is that no significant initial decrease in concentration of 284 fluoxymesterone M1 was observed for CR, GS and RM wastewater, which has the lowest logP value

(2.03) of all non-glucuronidated compounds investigated and is therefore the least likely to rapidly
adsorb to the biofilm and/or particulate matter to a large extent.

287 Regressions of logP value and CR%, GS% and RM% were explored to investigate if a high logP 288 value could have led to a stronger adsorption at time 0 to the biofilm and/or particulate matter (logP and RM% correlation, Figure S2). R^2 values were 0.402 (CR%), 0.344 (GS%) and 0.421 (RM%). This 289 290 indicates a weak to moderate association between logP value and adsorption potential, but also 291 suggests that other factors may be contributing. For example, stenabolic, stenabolic M2, and 292 stenabolic M6 showed lower calculated concentrations than predicted through the correlation 293 trendline, with predicted values of 29%, 66%, and 49%, and measured initial concentrations of 8%, 294 45%, and 13%, respectively. Due to their molecular structures, stenabolic and its metabolites may be 295 unstable in the wastewater matrix. This is consistent with their degradation in the biofilm-absent CR 296 over 12h.

Interestingly, when grouping the steroids by their molecular structure, 3, 17-hydroxy steroids (N=8) had the lowest initial concentrations in all three reactor types, with means (and medians) of 71% (75%) CR, 62% (65%) GS and 44% (42%) RM. 3-hydroxy, 17-oxo steroids (N=9) had higher means (and medians): 80% (83%) CR, 70% (74%) GS and 48% (49%) RM. The 3-oxo, 17-hydroxy steroid group (N=20) had the highest initial concentration means (and medians) of 91% (98%) CR, 78% (84%) GS and 63% (66%) RM reactor. LogP values within the three groups averaged at 3.81, 3.51 and 3.45, respectively.

304 3.2.3 Carryover between sewer stability experiments and transformation between analytes

305 Some metabolites only spiked in week 3, day 1, were detected in day 2 and 3 samples from 306 the GS and RM reactors. Generally, this only occurred in wastewater sampled from the reactors where 307 biofilm was present. A possible explanation for this is that sorption and the slow desorption of analytes 308 to and from the biofilm may have occurred. Contamination was excluded as a possibility, as the same 309 wastewater was fed into the three reactors and wastewater from the CR did not contain measurable 300 concentrations of the anabolic agents when they were not spiked (for analytes not already present in

311 raw wastewater). Furthermore, concentrations of non-spiked metabolites in the GS and RM increased 312 from the first to the last measurements for the detected metabolites, suggesting that desorption 313 occurred at a faster rate than degradation or transformation in unspiked wastewater at low levels, 314 e.g., norethandrolone M3 concentrations increased from 0.09 to 0.53 μ g/L in the GS and from 0.16 to 315 0.76 μ g/L in the RM in week 3, day 2 (spiking level week 3, day 1: 10 μ g/L). It is important to note, 316 however, that quantified concentrations were low (<10%) compared to the spiked concentration 317 levels in this study, with the largest maximum carryover percentages in week 3, day 2 samples 318 observed to be methyltestosterone M2 (GS: <LOQ to 0.87 µg/L (max. 8.7%); RM: <LOQ to 0.89 µg/L 319 (max. 8.9%)) and fluoxymesterone M1 (GS: <LOQ to 0.12 μg/L (max. 1.2%); RM: 0.14 to 0.87 μg/L (max. 320 8.7%)), both spiked at 10 µg/L in week 3, day 1. While this suggests sorption/desorption of biomarkers, 321 it is not likely to have had a significant impact on trends of subsequent experiments. One exception, 322 however, is etiocholanolone which increased in the GS from 2 to 5.2 µg/L (max. 39% carryover) and in 323 the RM from 1.8 to 3.9 μ g/L (max. 29%). In this case, it is difficult to estimate whether the increase 324 was caused by desorption from the biofilm or transformation of a different analyte, such as a 325 glucuronide, into etiocholanolone. As this biomarker is endogenous and readily found in wastewater, 326 it would have been present in the reactors in previous experiments. A similar trend was found in 327 samples from week 2 where this analyte was not spiked. This will have likely had an impact on the 328 stability data of etiocholanolone in the sewer reactors. Based on these observations, we would 329 recommend future in-sewer stability experiments consider sorption/desorption.

Many parent compounds that were spiked and investigated in week 2 were also detected in samples from week 3, day 1, in few cases above their LOQ. In this case, rather than desorption from the biofilm, the low levels of parent analytes were likely a result of transformation from the spiked metabolites. This is supported by samples from week 1, day 2&3, where very low levels of parents were detectable, despite never have being spiked into the reactors and not being present in the blank wastewater sample. While it is important to be aware of the possible transformation of the metabolites into the parents, the spiked levels of the metabolites are high, while detected levels of

the parent biomarkers were very low (<5%). For the biomarkers investigated in this study, this will</p>
likely not lead to false positives of parents when analysing wastewater, unless the metabolites are
present at very high levels, but should be taken into consideration when interpreting results.

340 An exception was methasterone M1, which was spiked in week 1, and while its concentration 341 in all three reactor types decreased, the concentration for its non-spiked parent methasterone 342 increased according to first order kinetics for CR and GS, from 0.07 to 1.77 µg/L and 0.09 to 0.3 µg/L, respectively (mean, n=3). The mean concentration increase between the CR, GS and RM was 343 344 significant (one-way ANOVA, p < 0.05), and the concentration increase was greatest in the CR and least 345 in the RM. This indicates that with decreasing quantities of biofilm either i) higher concentrations of 346 the parent are being formed from the metabolite, or ii) less of the parent compound is being 347 adsorbed/transformed upon formation.

348 3.2.4 Stability of metabolites and parent analytes

All biomarkers were most stable over 12h in the CR, less stable in the GS reactor, and least stable in the RM reactor (exception etiocholanolone, Figure 1). This is in agreement with previous studies on different compounds^{16, 19, 23}. The results of the control biomarkers acesulfame (stable in all reactor types) and paracetamol (stable in the CR, greater than 10% loss in <3 hours in the GS and RM reactors) were consistent with results found in the literature¹⁶.

354 The in-sewer stability for chemicals previously investigated in the literature generally follows a linear regression or first-order kinetics^{16, 20, 23}, whereas many biomarker concentration curves 355 356 investigated in this study follow a two-phase decay regression where the first fast phase may be a combination of sorption and transformation and the second phase may be a combination of 357 358 desorption and transformation (for the model of best fit for each biomarker, and equation parameters 359 see Table S5.). Briefly, out of a total of 61 biomarker concentration curves for each reactor type (183 360 total), 24 (CR), 5 (GS), and 4 (RM) curves best fit a linear regression; 26 (CR), 39 (GS), and 32 (RM) best 361 fit first order kinetics; and 11 (CR), 17 (GS), and 25 (RM) best fit two-phase decay. This shows that 18%, 362 53%, and 29% of all concentration curves follow a linear, first order, and two-phase regression,

respectively. In addition, it demonstrates an increase in the number of analytes following two-phase kinetics with increasing biofilm. This suggests that sorption and desorption may play a role in in-sewer anabolic agent stability, while this may not have been the case for many previously investigated chemicals. It should be noted, however, that the lack of two-phase decay data may also be a result of previous studies focussing on zero and first-order kinetics and not investigating two-phase decay behaviour.

Figure 1. Regression models for degradation of anabolic agents in control, gravity sewer, and rising main lab-scale sewer reactors. Horizontal axes show the time after spiking in hours; vertical axes show percent of initial concentration. Models were plotted according to the best fit of linear, first-order, and two-phase decay regressions. Error bands are the 95% confidence interval.

375 3.2.5 Steroid glucuronides

376 Glucuronides fully transformed or degraded in all three reactor types within 4-6 hours. 377 Exceptions were 19-norandrosterone glucuronide (8-12h) and drostanolone M1 glucuronide (8-12h). 378 Both are 3-O-glucuronides with 5α configuration. 3-O-glucuronides have previously been shown to be 379 more stable than 17-O-glucuronides, and α conjugates more stable than those with β configuration²⁴. 380 This correlated with the findings in our study. While the concentration of the glucuronides decreased, 381 the concentration of their non-glucuronidated forms increased in all three reactors (CR>GS>RM; Table 382 S6). Due to logistical reasons, boldenone was spiked during the same experiment as its glucuronide. 383 An increase in boldenone's initial concentrations was observed in the CR and GS. However, the 384 percentage of transformation was not calculated, as the cause of this increase could not be 385 determined, i.e., formation through sources other than glucuronide deconjugation.

386 3.2.6 Half-lives under aerobic conditions

Time until 10%, 50%, and 90% transformation was determined (Figure 2). Anabolic agents were sorted into three groups based on their mean half-lives in the GS, **a**) \geq 4h, **b**) 4-2h, and **c**) \leq 2h (Table 2.). Gravity sewer half-lives were chosen, because the majority of sewage systems consist of high proportions of gravity sewer pipelines²⁵. Hydraulic residence times between WWTP catchments can vary greatly, therefore, the mean HRT of 4 hours, from a European study including 25 WWTPS from 11 countries, was selected²⁵.

393

Table 2. Biomarkers categorised into three groups by half-lives in hours.

Group A (≥ 4h)	Group B (4-2h)	Group C (≤ 2h)	
Analyte	t₅₀ (h) Analyte	t₅₀ (h) Analyte	t₅₀ (h)

Estrone	7.8	Boldenone	3.6	Boldenone gluc	0.6
Fluoxymesterone	5.5	Boldenone M1	3.2	Methyl-1-	1.3
				testosterone	
Fluoxymesterone M1	6.9	Clostebol M1	3.6	19-Norandrosterone	1.4
				gluc	
Fluoxymesterone M2	6.9	Drostanolone M1	3.5	19-Noretiocho-	0.5
				lanolone gluc	
Metandienone	6.7	Drostanolone M1	2.2	Progesterone	1
		gluc			
Methasterone	5.5	Mesterolone M1	3	Stanozolol M1 gluc	0.3
Metenolone M1	5.7	Metandienone	2.8	Testosterone	2
Methylstenbolone	4.5	Metandienone M1	2.5	Androstenedione	1.8
Methyltestosterone M1	4.1	Metandienone M3	2.7	Androsterone gluc	0.9
/Norethandrolone M2					
Methyltestosterone M2	7.2	Methasterone M1	3.6	Stenabolic	1.8
19-Norandrosterone	5.6	Metenolone	3.2	Stenabolic M2	1
19-Noretiocholanolone	7.5	Methyltestosterone	2.2	Stenabolic M6	0.6
Norethandrolone M1	4.4	Nandrolone	2.4		
Norethandrolone M3	22.8	Epitestosterone	2.1		
Oxandrolone	25.5	Trenbolone	2.7		
Oxandrolone M1	23	DHCMT	2.7		
Stanozolol M1	5.1	Andarine	2.1		
Androsterone	4.2	YK-11	2.6		
Etiocholanolone	81.3				
Trenbolone M1	9.3				
DHCMT M1	6.5				
Cardarine	5.7				
Cardarine M1	15.6				
Cardarine M2	10.3				
Clenbuterol	77.1				
Enobosarm	4.8				
Ligandrol	5.7				
Testolone	6.8				

395

396 It is important to point out, that while HRTs in real sewage systems may be longer than 4 397 hours, sewer reactors generally overestimate degradation and transformation degree of biomarkers when compared to real sewer systems^{23, 26}. One reason for this is that the biofilm-area-to-wastewater-398 399 volume ratio is higher in the reactors than in most of the sewer network. This indicates that, under 400 real-world conditions, the half-lives may be longer than determined in this study, and the values here 401 should be viewed as conservative, or the maximum likely degradation. Based on these results, it can 402 be estimated that most of these biomarkers will be detectable and quantifiable in wastewater 403 influent, if sufficiently sensitive methods are used. This is supported by the fact that, despite our

- 404 results indicating complete degradation of testosterone and progesterone in the GS and RM reactors,
- 405 they have been analysed quantitatively in wastewater in multiple countries^{11, 12, 27}.

Con		trol Gravity Sewer		/ Sewer	Rising Main		
Boldenone-							
Boldenone gluc-				-		•	
Boldenone M1-					t_10		
Clostebol M1-				-	t 50		
Drostanolone M1-						-	
Drostanoione M1 giuc-					t_90		
Esuone-				-		-	
Fluoxymesterone M1-						-	
Fluoxymesterone M2-	_						
Mesterolone M1-							
Metandienone-							
Metandienone M1-							
Metandienone M2-							
Metandienone M3-							
Methasterone-							
Methasterone M1-		· · · · · · · · · · · · · · · · · · ·		<u> </u>			
Metenolone M1							
Methyl 1 testesterone				-			
Methylstenbolone-				·			
Methyltestosterone-					Storoide	-	
Methyltestosterone M1/Norethandrolone M2-					oterolus		
Methyltestosterone M2-		-			and		
Nandrolone-					hormones		
19-Norandrosterone-						-	
19-Norandrosterone gluc-						• • • • • • • • • • • • • • • • • • •	
19-Noretiocholanolone-						-	
19-Noretiocholanolone gluc-							
Norethandrolone M1-							
						-	
Oxandrolone M1-						<u> </u>	
Progesterone-						-	
Stanozolol M1-		-					
Stanozolol M1 gluc-				-		•	
Testosterone-						-	
Androstenedione-				-		P	
Androsterone-						-	
Androsterone gluc-							
Epitestosterone –				-			
Etiocholanolone-							
						- ·	
DHCMT M1-						-	
Andarine				-		-	
Cardarine-					_		
Cardarine M1-							
Cardarine M2-						_	
Clenbuterol-						-	
Enobosarm-				· · · · · · · · · · · · · · · · · · ·	SAPMe		
Ligandrol-					S/ANNIS	-	
Stenabolic							
Stenabolic M2-				-		-	
Testolone							
YK-11-						-	
Acesulfame-							
Paracetamol-				_	control		
	2 6 0	6 4			2 .6	0 6 4	
-1	2 -ο U hοι	irs 1.	ho	urs	ho ho	urs	

407 Figure 2. Time until 90% (t_90), 50% (t_50), and 10% (t_10) transformation in the control, gravity, and 408 rising main sewer reactors for anabolic agents. Bars with negative hour values represent an increase 409 in initial concentration over 12h, positive values represent a decrease in initial concentration. Note 410 that the x axis has been set at a maximum value of 12h as estimates beyond this are extrapolation 411 only.

- 412

413 3.3 Implications for wastewater analysis suitability of biomarkers

414 This study investigated biomarker stability over a period of 12h in a non-equilibrated system. 415 It is difficult to estimate the amount of time required to reach equilibrium in our lab-scale reactors. In 416 real sewage pipelines it is possible that an equilibrium is present, and that there is a constant rate of 417 sorption and desorption. Therefore, the initial decline in concentration over the first couple of hours 418 observed in this study may not be as pronounced in actual sewers. If the desorption rate is larger than 419 the rate of degradation/transformation, then there is an increased chance in detecting these 420 biomarkers in collected wastewater samples as supported by our results. Furthermore, shorter 421 catchment HRTs, increase the possibility of detecting and quantifying these biomarkers. Therefore, 422 upstream sampling, i.e., sampling closer to potential sources, will likely improve the detectability of 423 anabolic agents and their transformation may be more reflective of the results in the CR.

424 In other studies biomarkers were determined to be stable when i) <20% loss was observed 425 over $12h^{28}$, ii) <10% loss was observed >12h, or iii) R^2 < 0.3 or regressions did not significantly deviate 426 from zero²³, these criteria are likely not completely transferrable to biomarkers affected by 427 sorption/desorption. It should, however, be noted that these criteria were applied to determine if 428 back-calculation for consumption from measured concentrations was possible. We consider that for 429 many biomarkers investigated in this study, precise back-calculations to estimate steroid and SARM use may not be advisable, especially for biomarkers in groups B and C. Furthermore, comparing 430 431 concentrations of these chemicals across different sewage treatment plants presents a great 432 challenge, as the number, length, and other characteristics of gravity and rising main sewer pipelines

433	and HRTs can vary significantly. Nevertheless, wastewater analysis has great promise for qualitative
434	analysis to determine which anabolic agents are being used in the community, and trends over time.
435	This could be used to assess seasonal and annual differences, and potential patterns in use of specific
436	steroids or SARMs within the same population.

437

438 Supporting Information.

Tables (6), figures (2), equations (3), and explanatory text, as mentioned in the manuscript

441 4 Acknowledgements

The Queensland Alliance for Environmental Health Sciences, The University of Queensland, gratefully acknowledges the financial support of Queensland Health. The authors would like to thank the National Measurement Institute (NMI) for the generous provision of thirteen analytical reference chemicals used in this study. The authors gratefully acknowledge funding from Sport Integrity Australia (SIA). Katja M. Shimko is the recipient of a UQ Research Training Scholarship. The authors would like to thank the Advanced Water Management Centre (AWMC), The University of Queensland, for the use of their lab-scale sewer reactors.

References

- 1. Brennan, B.P., Kanayama, G., and Pope, H.G., Jr., *Performance-enhancing drugs on the web: a growing public-health issue.* The American Journal on Addictions, 2013. **22**(2): p. 158-161.
- 2. Kanayama, G., Kaufman, M.J., and Pope, H.G., Jr., *Public health impact of androgens*. Curr. Opin. Endocrinol. Diabetes Obes., 2018. **25**(3): p. 218-223.
- 3. Sagoe, D., Molde, H., Andreassen, C.S., Torsheim, T., and Pallesen, S., *The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis.* Ann. Epidemiol., 2014. **24**(5): p. 383-398.
- 4. Choi, P.Y.L., Parrott, A.C., and Cowan, D., *High-dose anabolic steroids in strength athletes: Effects upon hostility and aggression.* Hum. Psychopharmacol. Clin. Exp., 1990. **5**(4): p. 349-356.
- 5. Marquardt, G.H., Fisher, C.I., Levy, P., and Dowben, R.M., *Effect of Anabolic Steroids on Liver Function Tests and Creatine Excretion.* J. Am. Med. Assoc., 1961. **175**(10): p. 851-853.
- 6. Nieminen, M.S., Rämö, M.P., Viitasalo, M., Heikkilä, P., Karjalainen, J., Mäntysaari, M., and Heikkila, J., *Serious cardiovascular side effects of large doses of anabolic steroids in weight lifters*. Eur. Heart J., 1996. **17**(10): p. 1576-1583.
- 7. Pope, H.G., Jr, and Katz, D.L., *Psychiatric and medical effects of anabolic-androgenic steroid use: A controlled study of 160 athletes.* Arch. Gen. Psychiatry, 1994. **51**(5): p. 375-382.
- 8. Shimko, K.M., Piatkowski, T., Thomas, K.V., Speers, N., Brooker, L., Tscharke, B.J., and O'Brien, J.W., *Performance- and image-enhancing drug use in the community: use prevalence, user demographics and the potential role of wastewater-based epidemiology.* J. Hazard. Mater., 2021. **419**.
- 9. Backe, W.J., Ort, C., Brewer, A.J., and Field, J.A., *Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry*. Anal. Chem., 2011. **83**(7): p. 2622-2630.
- Causanilles, A., Nordmann, V., Vughs, D., Emke, E., de Hon, O., Hernández, F., and de Voogt, P., Wastewater-based tracing of doping use by the general population and amateur athletes. Analytical and Bioanalytical Chemistry, 2018. 410(6): p. 1793-1803.
- 11. Schröder, H., Gebhardt, W., and Thevis, M., *Anabolic, doping, and lifestyle drugs, and selected metabolites in wastewater-detection, quantification, and behaviour monitored by high-resolution MS and MS n before and after sewage treatment.* Analytical and Bioanalytical Chemistry, 2010. **398**(3): p. 1207-1229.
- 12. Shimko, K.M., O'Brien, J.W., Barron, L., Kayalar, H., Mueller, J.F., Tscharke, B.J., Choi, P.M., Jiang, H., Eaglesham, G., and Thomas, K.V., *A pilot wastewater-based epidemiology assessment of anabolic steroid use in Queensland, Australia.* Drug Test. Anal., 2019. **11**(7): p. 937-949.
- Gracia-Lor, E., Castiglioni, S., Bade, R., Been, F., Castrignano, E., Covaci, A., Gonzalez-Marino, I., Hapeshi, E., Kasprzyk-Hordern, B., Kinyua, J., Lai, F.Y., Letzel, T., Lopardo, L., Meyer, M.R., O'Brien, J., Ramin, P., Rousis, N.I., Rydevik, A., Ryu, Y., Santos, M.M., Senta, I., Thomaidis, N.S., Veloutsou, S., Yang, Z., Zuccato, E., and Bijlsma, L., *Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives.* Environ. Int., 2017. **99**: p. 131-150.
- 14. Sun, L., Liu, Y., Chu, X., and Lin, J.-M., *Trace Analysis of Fifteen Androgens in Environmental Waters by LC-ESI-MS-MS Combined with Solid-Phase Disk Extraction Cleanup.* Chromatographia, 2010. **71**(9-10): p. 867-873.
- 15. World Anti-Doping Agency, *The World Anti-Doping Code International Standard Prohibited List January 2021.* 2021.
- 16. O'Brien, J.W., Banks, A.P., Novic, A.J., Mueller, J.F., Jiang, G., Ort, C., Eaglesham, G., Yuan, Z., and Thai, P.K., *Impact of in-Sewer Degradation of Pharmaceutical and Personal Care Products*

(PPCPs) Population Markers on a Population Model. Environ. Sci. Technol., 2017. 51(7): p. 3816-3823.

- 17. McCall, A.K., Bade, R., Kinyua, J., Lai, F.Y., Thai, P.K., Covaci, A., Bijlsma, L., van Nuijs, A.L.N., and Ort, C., *Critical review on the stability of illicit drugs in sewers and wastewater samples.* Water Res., 2016. **88**: p. 933-947.
- ICH-Expert-Working-Group. Validation of Analytical Procedures: Text and Methodology Q2(R1), ICH Harmonised Tripartite Guidline. 2005 [cited 2021 Access Date 30/07/2021]; 1-17]. Available from: <u>https://www.ich.org/page/quality-guidelines</u>.
- 19. Li, J., Gao, J., Thai, P.K., Sun, X., Mueller, J.F., Yuan, Z., and Jiang, G., *Stability of Illicit Drugs as Biomarkers in Sewers: From Lab to Reality.* Environ. Sci. Technol., 2018. **52**(3): p. 1561-1570.
- 20. O'Brien, J.W., Choi, P.M., Li, J., Thai, P.K., Jiang, G., Tscharke, B.J., Mueller, J.F., and Thomas, K.V., *Evaluating the stability of three oxidative stress biomarkers under sewer conditions and potential impact for use in wastewater-based epidemiology*. Water Res., 2019. **166**: p. 115068.
- 21. Li, J., Gao, J., Thai, P.K., Shypanski, A., Nieradzik, L., Mueller, J.F., Yuan, Z., and Jiang, G., *Experimental Investigation and Modeling of the Transformation of Illicit Drugs in a Pilot-Scale Sewer System.* Environ. Sci. Technol., 2019. **53**(8): p. 4556-4565.
- 22. Ramin, P., Libonati Brock, A., Polesel, F., Causanilles, A., Emke, E., de Voogt, P., and Plosz, B.G., *Transformation and Sorption of Illicit Drug Biomarkers in Sewer Systems: Understanding the Role of Suspended Solids in Raw Wastewater.* Environ. Sci. Technol., 2016. **50**(24): p. 13397-13408.
- 23. Choi, P.M., Li, J., Gao, J., O'Brien, J.W., Thomas, K.V., Thai, P.K., Jiang, G., and Mueller, J.F., *Considerations for assessing stability of wastewater-based epidemiology biomarkers using biofilm-free and sewer reactor tests.* Sci. Total Environ., 2020. **709**: p. 136228.
- 24. de la Torre, R., de la Torre, X., Alía, C., Segura, J., Baró, T., and Torres-Rodríguez, J.M., *Changes in Androgenic Steroid Profile Due to Urine Contamination by Microorganisms: A Prospective Study in the Context of Doping Control.* Anal. Biochem., 2001. **289**(2): p. 116-123.
- 25. Ort, C., van Nuijs, A.L., Berset, J.D., Bijlsma, L., Castiglioni, S., Covaci, A., de Voogt, P., Emke, E., Fatta-Kassinos, D., Griffiths, P., Hernandez, F., Gonzalez-Marino, I., Grabic, R., Kasprzyk-Hordern, B., Mastroianni, N., Meierjohann, A., Nefau, T., Ostman, M., Pico, Y., Racamonde, I., Reid, M., Slobodnik, J., Terzic, S., Thomaidis, N., and Thomas, K.V., *Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis.* Addiction, 2014. **109**(8): p. 1338-1352.
- Gao, J., Li, J., Jiang, G., Shypanski, A.H., Nieradzik, L.M., Yuan, Z., Mueller, J.F., Ort, C., and Thai, P.K., Systematic evaluation of biomarker stability in pilot scale sewer pipes. Water Res., 2019. 151: p. 447-455.
- 27. Liu, S., Ying, G.G., Zhao, J.L., Chen, F., Yang, B., Zhou, L.J., and Lai, H.J., *Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry.* Journal of Chromatography A, 2011. **1218**(10): p. 1367-1378.
- 28. McCall, A.K., Scheidegger, A., Madry, M.M., Steuer, A.E., Weissbrodt, D.G., Vanrolleghem, P.A., Kraemer, T., Morgenroth, E., and Ort, C., *Influence of Different Sewer Biofilms on Transformation Rates of Drugs.* Environ. Sci. Technol., 2016. **50**(24): p. 13351-13360.

Supplementary Information (SI) for

In-sewer stability assessment of steroids and selective androgen receptor modulators

Katja M. Shimko^{a*}, Jake W. O'Brien^a, Jiaying Li^a, Ben Tscharke^a, Lance Brooker^b, Phong K. Thai^a, Phil M. Choi^{a,c}, Saer Samanipour^{a,d,e} and Kevin V. Thomas^a

^aQueensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba QLD 4102, Australia ^bAustralian Sports Drug Testing Laboratory (ASDTL), National Measurement Institute (NMI), 105 Delhi Road, North Ryde NSW 2113, Australia ^cWater Unit, Health Protection Branch, Queensland Health, 15 Butterfield Street, Herston QLD 4006, Australia ^dUniversity of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, The Netherlands

^eNorwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway

Corresponding author: Katja M. Shimko. Email: <u>k.shimko@uq.edu.au</u>

2 Figures, 6 Tables and 3 equations;

Materials and methods

Lichrosolv grade methanol and analytical grade hydrochloric acid (32%) were purchased from Merck Pty Ltd (Highway Bayswater, VIC, AU) and 0.2 μ m RC filters from Agilent (Mulgrave, VIC, AU). Ammonium fluoride was sourced from Sigma-Aldrich (Castle Hill, NSW, AU). Water was purified to 18.2 M Ω cm⁻¹ using a Milli-Q ultrapure water system and filtered using a 0.22 μ m filter (Millipore, Bedford, MA, USA).

Andarine, clenbuterol (hydrochloride), ligandrol, stenabolic, and YK-11 were purchase from Cayman Chemical (Ann Arbor, MI, USA). D₃-boldenone, boldenone glucuronide (K salt), boldenone M1, d₉clenbuterol (hydrochloride), clostebol M1, dehydrochlormethyltestosterone, dehydrochlormethyltestosterone M1, drostanolone M1, drostanolone M1 glucuronide (Na salt), fluoxymesterone M1, fluoxymesterone M2, mesterolone M1, metenolone M1, metandienone M1, metandienone M2, metandienone M3, methasterone, methasterone M1, methyl-1-testosterone, methyltestosterone M1, methyltestosterone M2, d₃-methyltestosterone M2, 19-norandrosterone, d₄-19-norandrosterone, 19-norandrosterone glucuronic acid (Na salt), 19-noretiocholanolone, d₄-19noretiocholanolone, 19-noretiocholanolone glucuronic acid (Na salt), norethandrolone M1, norethandrolone M2, norethandrolone M3, oxandrolone M1, stenabolic M2, stenabolic M6, stanozolol M1, stanozolol M1 glucuronide, androsterone, d₄-androsterone, androsterone glucuronide, etiocholanolone, d_5 -etiocholanolone, trenbolone M1, 17 α -methyltestosterone, oxandrolone, testosterone, and d₃-epitestosterone were sourced from National Measurement Institute (North Ryde, NSW, AU). Nandrolone was supplied by British Pharmacopoeia Commission Laboratory (Teddington, Middlesex, UK). Sigma-Aldrich (Castle Hill, NSW, AU) provided boldenone, estrone, metandienone, progesterone and trenbolone.

Androstenedione, ¹³C₃-androstenedione, and epitestosterone were sourced from Cerilliant (Round Rock, TX, USA). D₃-Nandrolone and d₃-testosterone were purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA). Fluoxymesterone was supplied by LGC (Luckenwalde, Germany). Cardarine M1, cardarine M2, methasterone M1, metenolone, methylstenbolone, testolone, d₅-stanozolol M1, d₅-trenbolone, d₅-trenbolone M1 were purchased from Toronto Research Chemicals Inc. (North York, ON, CA). Enobosarm was sourced from Selleck Chemicals Llc (Houston, TX, USA).

S2

Instrument method (LC-MS/MS)

Optimised MS parameters: temperature 530 °C, curtain gas 30 psi, IonSpray voltage 4500 V and -4500 V, and Ion Source Gas 1 and 2, 80 psi.

Table S1. Optimised MS conditions of each MRM transition including ESI polarity, precursor and selected product ions, declustering potential (DP), entrance potential (EP), collision energy (CE), and cell exit potential (CXP).

Analyte	ESI	Precursor	Selected	DP	EP	CE	CXP
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
Method A							
13C3-Androstenedione	+	290.0	112.0	90	10	30	17
	+	290.0	100.0	90	10	28	12
17a-Methyltestosterone	+	303.2	267.1	100	10	24	16
	+	303.2	227.1	100	10	27	14
	+	303.2	109.1	100	10	33	18
19-Norandrosterone	+	259.3	241.3	120	10	18	20
	+	277.3	241.4	50	10	19	14
	+	259.3	145.3	120	10	26	20
19-Noretiocholanolone	+	259.3	241.4	140	10	15	15
	+	259.3	145.3	140	10	27	17
	+	259.3	201.4	140	10	21	25
Andarine	+	442.2	400.1	130	10	21	25
	+	442.2	208.2	130	10	27	12
	+	442.2	190.2	130	10	31	11
Androstenedione	+	287.3	97.0	80	10	26	15
	+	287.3	109.1	80	10	29	15
	+	287.3	251.1	80	10	23	15
Androsterone	+	273.3	255.4	165	10	17	14
	+	273.3	147.3	165	10	27	17
	+	273.3	105.3	165	10	43	24
Boldenone	+	287.2	121.1	58	10	30	15
	+	287.2	135.1	58	10	20	22
	+	287.2	269.1	58	10	14	16
Boldenone M1	+	289.3	271.3	110	10	17	17
	+	289.3	187.3	110	10	25	23
	+	289.3	201.3	110	10	22	24

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
Clenbuterol	+	277.2	203.1	60	10	22	12
	+	277.2	259.2	60	10	14	15
	+	277.2	132.2	60	10	39	14
Clostebol M1	+	305.3	269.2	120	10	13	17
	+	305.3	287.2	120	10	12	19
	+	305.3	251.2	120	10	19	15
d3-Boldenone	+	289.9	272.0	180	10	15	16
	+	289.9	137.9	180	10	20	22
	+	289.9	120.9	180	10	30	16
d3-Epitestosterone	+	291.9	108.9	100	10	32	13
	+	291.9	96.9	100	10	28	15
d3-Methyltestosterone M2	+	273.9	191.9	140	10	23	28
	+	273.9	178.0	140	10	24	19
	+	273.9	111.9	140	10	24	25
d3-Nandrolone	+	277.9	241.9	100	10	24	13
	+	277.9	108.9	100	10	34	12
d3-Testosterone	+	291.9	108.9	90	10	35	14
	+	291.9	96.9	90	10	31	14
d4-19-Norandrosterone	+	262.9	245.0	150	10	18	15
	+	262.9	189.0	150	10	26	23
	+	262.9	144.9	150	10	27	20
d4-19-Noretiocholanolone	+	262.9	245.0	150	10	16	14
	+	262.9	205.0	150	10	22	12
	+	262.9	189.0	150	10	22	11
d4-Androsterone	+	277.0	259.0	140	10	18	15
	+	277.0	160.9	140	10	25	22
	+	277.0	146.9	140	10	25	17
d5-Etiocholanolone	+	277.9	260.0	125	10	15	16
	+	277.9	220.0	125	10	21	25
	+	277.9	203.9	125	10	21	26
d5-Stanozolol M1	+	350.2	97.0	210	11	52	22
	+	350.2	91.1	210	11	105	12
	+	350.2	77.1	210	11	105	12
d5-Trenbolone	+	276.2	258.1	125	10	28	15
	+	276.2	232.1	125	10	31	13

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
	+	276.2	204.1	125	10	30	11
d5-Trenbolone M1	+	276.2	258.1	150	10	28	16
	+	276.2	230.0	150	10	31	13
	+	276.2	204.1	150	10	32	12
d9-Clenbuterol	+	285.8	203.9	70	10	22	24
	+	285.8	132.9	70	10	40	19
	+	287.8	205.8	60	10	22	21
Dehydrochlormethyltestosterone	+	335.3	317.3	90	10	16	19
	+	317.2	155.2	165	10	32	20
	+	335.2	155.2	90	10	35	18
Dehydrochlormethyltestosterone M1	+	333.2	315.1	155	10	15	19
	+	351.3	315.1	50	10	15	18
	+	333.2	155.1	155	10	34	20
Drostanolone M1	+	287.4	269.4	136	10	17	17
	+	287.4	145.3	136	10	24	20
	+	287.4	121.3	136	10	27	20
Epitestosterone	+	289.3	97.3	80	10	30	12
	+	289.3	109.3	80	10	31	16
	+	289.3	253.3	80	10	24	15
Estrone	-	269.3	145.3	-125	-10	-47	-10
	-	269.3	143.3	-125	-10	-69	-16
	-	269.3	159.3	-125	-10	-46	-10
Etiocholanolone	+	273.2	255.2	100	10	15	16
	+	273.2	215.2	100	10	21	26
	+	273.2	199.2	100	10	21	24
Fluoxymesterone	+	337.4	241.3	80	10	33	15
	+	337.4	223.3	80	10	33	14
	+	337.4	181.3	80	10	40	18
Fluoxymesterone M1	+	337.4	95.1	125	10	27	15
	+	337.4	317.2	125	10	16	19
	+	337.4	299.1	125	10	19	20
Fluoxymesterone M2	+	319.3	281.1	130	10	25	15
	+	319.3	225.1	130	10	31	25
	+	319.3	299.2	130	10	25	20
Cardarine	+	454.1	257.0	185	10	40	14

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
	+	454.1	188.1	185	10	59	22
	+	454.1	172.1	185	10	90	19
Cardarine M1	+	486.1	257.2	160	10	40	16
	+	486.1	256.2	160	10	65	13
	+	486.1	188.2	160	10	65	12
Cardarine M2	+	470.2	256.9	45	10	30	24
	+	470.2	255.9	45	10	20	25
	+	470.2	187.9	45	10	64	22
Ligandrol	+	339.3	199.2	145	10	40	11
	+	339.3	170.2	145	10	71	10
	+	339.3	152.2	145	10	65	17
Mesterolone M1	+	287.3	269.3	145	10	17	15
	+	287.3	161.3	145	10	22	19
	+	287.3	147.3	145	10	22	18
Metandienone	+	301.3	149.3	58	10	21	18
	+	301.3	121.3	58	10	34	15
	+	301.3	173.3	58	10	23	23
Metandienone M1	+	283.3	121.3	150	10	29	18
	+	301.3	121.3	60	10	32	19
	+	301.3	149.4	60	10	21	18
Metandienone M2	+	299.2	281.1	85	10	12	20
	+	299.2	147.1	85	10	25	17
	+	299.2	121.1	85	10	28	19
Metandienone M3	+	269.3	105.3	85	10	34	11
	+	269.3	201.3	85	10	25	25
	+	269.3	161.4	85	10	29	21
Methasterone	+	319.4	283.4	155	10	21	18
	+	319.4	301.4	155	10	19	18
	+	319.4	229.4	155	10	26	20
Methasterone M1	+	285.4	175.3	130	10	23	11
	+	285.4	161.3	130	10	23	9
	+	285.4	91.3	130	10	65	14
Metenolone	+	303.4	187.3	115	10	28	11
	+	303.4	83.2	115	10	25	21
	+	303.4	205.3	115	10	23	12

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
Metenolone M1	+	285.2	267.2	145	10	17	15
	+	285.2	121.1	145	10	28	20
	+	285.2	119.1	145	10	35	15
Methyl-1-T	+	303.2	201.2	120	10	24	24
	+	303.2	145.1	120	10	34	20
	+	303.2	91.1	120	10	67	14
Methylstenbolone	+	317.4	201.3	130	10	25	12
	+	317.4	145.3	130	10	34	16
	+	317.4	91.2	130	10	70	10
Methyltestosterone M1	+	271.3	161.2	80	10	24	25
	+	271.3	147.2	80	10	24	21
	+	271.3	135.2	80	10	25	21
Methyltestosterone M2	+	271.2	175.1	125	10	25	26
	+	271.2	189.1	125	10	23	27
	+	271.2	109.1	125	10	26	24
Nandrolone	+	275.2	239.1	90	10	23	15
	+	275.2	109.1	90	10	34	17
	+	275.2	213.1	90	10	27	25
Norethandrolone M1	+	271.2	175.3	120	10	21	20
	+	271.2	147.3	120	10	21	18
	+	271.2	121.2	120	10	24	19
Norethandrolone M3	+	287.3	243.3	95	10	18	21
	+	287.3	147.3	95	10	28	17
	+	287.3	121.3	95	10	28	19
Enobosarm	+	407.3	390.1	60	10	16	23
	+	390.3	370.1	140	10	18	22
	+	390.3	187.1	140	10	18	22
Oxandrolone	+	307.2	271.1	50	10	18	15
	+	307.2	229.1	50	10	23	13
	+	307.2	253.1	50	10	21	14
Oxandrolone M1	+	307.3	289.4	80	10	14	17
	+	289.3	229.4	160	10	22	28
	+	289.3	135.3	160	10	26	22
Progesterone	+	315.2	97.1	105	10	26	15
	+	315.2	109.1	105	10	28	15

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
	+	315.2	79.0	105	10	69	12
Testolone	+	394.2	223.1	120	10	15	12
	+	396.2	225.1	115	10	15	13
	+	394.2	170.1	120	10	39	20
Stenabolic	+	438.2	125.2	100	10	30	13
	+	440.2	127.2	100	10	30	11
	+	438.2	89.2	100	10	100	40
Stenabolic M2	+	314.2	268.1	70	10	18	15
	+	314.2	142.0	70	10	26	18
	+	314.2	221.1	70	10	26	12
Stenabolic M6	+	283.3	125.1	60	10	18	20
	+	283.3	89.2	60	10	69	13
Stanozolol	+	329.1	107.1	100	10	51	16
	+	329.1	203.1	100	10	45	24
	+	329.1	121.1	100	10	47	14
Stanozolol M1	+	345.1	97.0	90	10	51	13
	+	345.1	97.0	260	10	51	12
	+	345.1	121.0	90	10	50	17
Stanozolol M1 gluc	+	521.0	345.0	90	10	32	20
	+	521.0	121.0	90	10	77	18
	+	521.0	97.0	90	10	80	15
Testosterone	+	289.3	97.3	92	10	27	17
	+	289.3	109.3	92	10	31	13
	+	289.3	123.3	92	10	32	14
Trenbolone	+	271.3	227.3	100	10	31	13
	+	271.3	199.3	160	10	46	6
	+	271.3	165.3	160	10	46	6
Trenbolone M1	+	271.3	253.3	155	10	28	14
	+	271.3	199.3	155	10	32	23
	+	271.3	165.3	155	10	70	20
YK-11	+	356.9	324.9	140	10	17	18
	+	357.0	307.1	140	10	26	18
	+	357.0	267.1	140	10	27	15
Method B							
19-Norandrosterone gluc	-	451.3	113.2	-140	-10	-35	-18

Analyte	ESI	Precursor	Selected	DP	EP	CE	CXP
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
	-	451.3	273.3	-140	-10	-55	-24
	-	451.3	275.3	-140	-10	-40	-23
19-Noretiocholanolone gluc	-	451.3	113.2	-150	-10	-37	-13
	-	451.3	85.3	-150	-10	-36	-10
	-	451.3	273.3	-150	-10	-55	-16
Andarine	-	440.4	261.4	-105	-10	-25	-11
	-	440.4	150.5	-105	-10	-36	-21
	-	440.4	107.4	-105	-10	-69	-17
Androsterone	+	273.4	105.4	165	10	43	24
	+	273.4	147.4	165	10	27	17
	+	273.4	255.5	165	10	17	14
Androsterone gluc	-	465.3	113.3	-135	-10	-36	-13
	-	465.3	447.3	-135	-10	-30	-20
	-	465.3	157.3	-135	-10	-35	-15
Boldenone gluc	-	461.3	113.3	-160	-10	-34	-12
	-	461.3	85.3	-160	-10	-33	-11
	-	461.3	157.2	-160	-10	-32	-18
Clenbuterol	+	277.3	132.3	60	10	39	14
	+	277.3	203.2	60	10	22	12
	+	277.3	259.3	60	10	14	15
d5-Etiocholanolone	+	278	204	125	10	21	26
	+	278	220.1	125	10	21	25
	+	278	260.1	125	10	15	16
d9-Clenbuterol	+	285.9	133	70	10	40	19
	+	285.9	204	70	10	22	24
	+	287.9	205.9	60	10	22	21
Drostanolone M1	+	287.5	121.4	136	10	27	20
	+	287.5	145.4	136	10	24	20
	+	287.5	269.5	136	10	17	17
Drostanolone M1 gluc	-	479.5	113.2	-170	-10	-37	-13
	-	479.5	85.2	-170	-10	-36	-12
	-	479.5	157.2	-170	-10	-36	-14
Etiocholanolone	+	273.3	199.3	100	10	21	24
	+	273.3	215.3	100	10	21	26
	+	273.3	255.3	100	10	15	16
Cardarine	+	454.2	172.2	185	10	90	19
	+	454.2	188.2	185	10	59	22
	+	454.2	257.1	185	10	40	14
Cardarine	-	452.1	138.2	-75	-10	-30	-12
	-	452.1	394.1	-75	-10	-20	-21
	-	452.1	123.2	-75	-10	-55	-19
Cardarine M1	+	486.2	188.3	160	10	65	12

Analyte	ESI	Precursor	Selected	DP	EP	CE	СХР
	polarity	lon <i>(m/z)</i>	Product	(eV)	(eV)	(eV)	(eV)
			lon <i>(m/z)</i>				
	+	486.2	256.3	160	10	65	13
	+	486.2	257.3	160	10	40	16
Cardarine M1	-	484.2	426.3	-65	-10	-22	-16
	-	484.2	170.3	-65	-10	-36	-21
	-	484.2	122.4	-65	-10	-44	-18
Cardarine M2	+	470.3	188	45	10	64	22
	+	470.3	256	45	10	20	25
	+	470.3	257	45	10	30	24
Cardarine M2	-	468.2	212.2	-45	-10	-19	-11
	-	468.2	154.2	-45	-10	-35	-16
	-	468.2	139.2	-45	-10	-40	-16
Ligandrol	-	337.4	267.4	-110	-10	-14	-12
	-	337.4	170.4	-110	-10	-35	-21
	-	337.4	239.4	-110	-10	-25	-10
Metandienone M3	+	269.1	213.2	85	10	22	13
	+	269.4	161.5	85	10	29	21
	+	269.4	201.4	85	10	25	25
Methasterone M1	+	285.5	91.4	130	10	65	14
	+	285.5	161.4	130	10	23	9
	+	285.5	175.4	130	10	23	11
Methyltestosterone M1	+	271.4	135.3	80	10	25	21
	+	271.4	147.3	80	10	24	21
	+	271.4	161.3	80	10	24	25
Methyltestosterone M2	+	271.3	109.2	125	10	26	24
	+	271.3	175.2	125	10	25	26
	+	271.3	189.2	125	10	23	27
Norethandrolone M1	+	271.3	121.3	120	10	24	19
	+	271.3	147.4	120	10	21	18
	+	271.3	175.4	120	10	21	20
Norethandrolone M2	+	271.3	121.2	70	10	21	20
	+	271.3	135.3	70	10	24	25
	+	289.3	271.3	115	10	13	17
Testolone	-	348.1	321.1	-90	-10	-13	-17
	-	348.1	127.3	-90	-10	-26	-16
	-	348.1	145.2	-90	-10	-15	-14
Stenabolic M6	+	283.4	89.3	60	10	69	13
	+	283.4	125.2	60	10	18	20
Stanozolol M1 gluc	-	519.4	343.3	-145	-10	-51	-18
	-	519.4	113.2	-145	-10	-31	-13
	-	519.4	175.3	-145	-10	-29	-14

Study design

Table S2. Experiment spiking schedule and level for anabolic agents, and isotopically labelled internal standards used during instrumental analysis.

Analyte	Spiking level			Isotopically labelled internal standard							
	(µg/L)	Weel	(1		Week 2			Wee	3		for LC analysis
		Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	
Andarine	2				х	х	х				d ₅ -Trenbolone
Androstenedione	10		x	x				x			¹³ C ₃ - Androstenedione
Androsterone	13.3		х	х				х			d ₄ -Androsterone
Boldenone	5				х	х	х				d₃-Boldenone
Boldenone M1	10		х	х				х			d ₃ -Epitestosterone
Cardarine	2				x	x	x				d ₃ - Methyltestosterone M2
Cardarine M1	2							х	х	х	d ₅ -Trenbolone M1
Cardarine M2	10		х	х				х			d ₅ -Trenbolone
Clenbuterol	2				х	х	х				d ₉ -Clenbuterol
Clostebol M1	13.3		х	х				х			d ₅ -Etiocholanolone
Drostanolone M1	10		x	x				x			d ₃ - Methyltestosterone M2
Enobosarm	8				х	х	х				d ₃ -Testosterone
Epitestosterone	10		х	х				х			d ₃ -Epitestosterone
Estrone	8				x	x	x				¹³ C ₃ - Androstenedione
Etiocholanolone	13.3		х	х				х			d ₅ -Etiocholanolone
Fluoxymesterone	8				х	х	х				d ₃ -Boldenone
Fluoxymesterone M1	10		х	х				х			d ₅ -Trenbolone
Fluoxymesterone M2	10		х	х				х			d ₅ -Etiocholanolone
Ligandrol	5				х	х	х				d ₃ -Testosterone
Mesterolone M1	10		x	x				x			d ₃ - Methyltestosterone M2
Metandienone	5				х	х	x				d ₃ -Boldenone
Metandienone M1	10		x	x				x			d₄-19- Noretiocholanolone
Metandienone M2	10	10 x x x x			d ₅ -Trenbolone						
Metandienone M3	10	10 x x x x x x			d ₃ - Methyltestosterone M2						

Methasterone	8				x	х	x		d ₃ - Methyltestosterone M2
Methasterone M1	10	x	x	x					d ₃ - Methyltestosterone M2
Metenolone	5				х	х	х		d ₃ -Testosterone
Metenolone M1	13.3		x	х				х	d₅-Etiocholanolone
Methyl-1- testosterone	10				х	Х	х		d ₃ -Testosterone
Methylstenbolone	5				x	x	x		d₃- Methyltestosterone M2
Methyltestosterone	10				х	х	х		d ₃ -Testosterone
Methyltestosterone M1	10		x	x				x	d ₃ - Methyltestosterone M2
Methyltestosterone M2	10		x	x				x	d ₃ - Methyltestosterone M2
Nandrolone	8				х	х	х		d₃-Nandrolone
19-Norandrosterone	10		x	x				x	d ₄ -19- Norandrosterone
19- Noretiocholanolone	13.3		x	X				x	d₄-19- Noretiocholanolone
Norethandrolone M1	10		x	x				x	d₃- Methyltestosterone M2
Norethandrolone M2	10		x	x				x	d₃- Methyltestosterone M2
Norethandrolone M3	10		x	x				x	d₃- Methyltestosterone M2
Oxandrolone	15				х	х	х		d ₃ -Testosterone
Oxandrolone M1	10		х	х				х	d ₃ -Epitestosterone
Progesterone	5				х	х	x		d ₃ -Testosterone
Stanozolol M1	10		x	х				х	d₅-Stanozolol M1
Stanozolol M1 gluc	5				х	х	х		d₅-Stanozolol M1
Stenabolic	5				x	x	x		d₃- Methyltestosterone M2
Stenabolic M2	10		х	х				x	d ₅ -Trenbolone
Stenabolic M6	10		x	х				х	d ₃ -Epitestosterone
Testolone	5				x	х	x		d ₃ -Boldenone
Testosterone	5				х	х	х		d ₃ -Testosterone
Trenbolone	10				x	х	x		d₅-Trenbolone
Trenbolone M1	10		x	х				х	d ₅ -Trenbolone M1

Dehydrochlormethyl -testosterone	8			x	x	x			d ₃ -Boldenone
Dehydrochlormethyl -testosterone M1	10	х	х				х		d ₅ -Trenbolone
YK-11	9			х	х	х			d_3 -Testosterone
19-Norandrosterone gluc	10			x	x	x			d ₅ -Etiocholanolone
19-Noretiocholano Ione gluc	10			x	x	x			d ₅ -Etiocholanolone
Androsterone gluc	15			х	х	х			d_5 -Etiocholanolone
Boldenone gluc	5			х	х	х			d₅-Etiocholanolone
Drostanolone M1 gluc	8			x	x	х			d ₅ -Etiocholanolone
Stanozolol M1 gluc (method B)	5			x	x	x			d ₅ -Etiocholanolone

Results and discussion

Instrument performance assessment

Table S3. Instrument method performance assessment values including quantifier transition (MRM), ESI mode, LOD, LOQ, accuracy, precision, and linearity.

Analyte	MRM	ESI	LOD	LOQ					%Accuracy	/ ± %RSD		I	Linearity
	m/z						Low	spike			Medium spike	High spike	(<i>R</i> ²)
			(µg L⁻¹)	(µg L⁻¹)	0.01 μg L ⁻¹	0.04 μg L ⁻¹	0.08 μg L ⁻¹	0.31 μg L ⁻¹	0.63 µg L ⁻¹	1.25 μg L ⁻¹	5 μg L ⁻¹	10 µg L ⁻¹	
			n = 8	n = 8	n = 8	n = 7	n = 8	n = 8	n = 8	n = 8	n = 8	n = 8	N ≥ 5
Method A													
Andarine	442 → 400	+	0.01	0.03	103 ± 15	98 ± 4	80 ± 4				103 ± 2	100 ± 2	0.9986
Androstenedione	287 → 97	+	0.03	0.08			95 ± 11				103 ± 2	102 ± 2	0.9992
Androsterone	273 → 255	+	0.43	1.29						114 ± 9	103 ± 3	96 ± 4	0.9980
Boldenone	287 → 121	+	0.01	0.03		98 ± 8	99 ± 4				101 ± 2	101 ± 2	0.9995
Boldenone M1	289 → 187	+	0.13	0.38				109 ± 11			99 ± 3	102 ± 4	0.9995
Cardarine	454 → 257	+	0.02	0.05			68 ± 9				103 ± 4	94 ± 3	0.9944
Cardarine M1	486 → 257	+	0.01	0.03	105 ± 6	104 ± 4	76 ± 4				108 ± 2	104 ± 2	0.9976
Cardarine M2	470 → 257	+	0.01	0.02	110 ± 5	106 ± 3	75 ± 3				103 ± 3	101 ± 2	0.9958
Clenbuterol	277 → 203	+	0.01	0.02		96 ± 5	90 ± 3				105 ± 1	103 ± 1	0.9996
Clostebol M1	305 → 269	+	0.54	1.63						116 ± 11	102 ± 5	99 ± 5	0.9970
Drostanolone M1	287 → 269	+	0.27	0.81						103 ± 6	99 ± 5	102 ± 6	0.9997
Enobosarm	407 → 390	+	0.05	0.15				100 ± 5			100 ± 3	100 ± 4	0.9991
Epitestosterone	289 → 97	+	0.03	0.10			109 ± 11	99 ± 7			102 ± 2	100 ± 2	0.9999
Estrone	269 → 145	-	0.07	0.22				89 ± 8			97 ± 3	100 ± 1	0.9979
Etiocholanolone	273 → 255	+	0.11	0.32				69 ± 15			103 ± 7	101 ± 3	0.9949
Fluoxymesterone	337 → 241	+	0.12	0.35				97 ± 12			106 ± 4	102 ± 3	0.9971
Fluoxymesterone M1	$337 \rightarrow 95$	+	0.02	0.05		90 ± 6	97 ± 6				98 ± 5	101 ± 6	0.9995
Fluoxymesterone M2	319 → 281	+	0.02	0.05			86 ± 7				102 ± 2	102 ± 2	0.9998

Analyte	MRM	ESI	LOD	LOQ					%Accuracy	± %RSD			Linearity
	m/z						Low	spike			Medium spike	High spike	(<i>R</i> ²)
			(µg L ⁻¹)	(µg L ⁻¹)	0.01 µg L ⁻¹	0.04 µg L ⁻¹	0.08 µg L ⁻¹	0.31 µg L ⁻¹	0.63 µg L ⁻¹	1.25 μg L ⁻¹	5 μg L ⁻¹	10 µg L ⁻¹	
			n = 8	n = 8	n = 8	n = 7	n = 8	n = 8	n = 8	n = 8	n = 8	n = 8	N ≥ 5
Ligandrol	339 → 199	+	0.01	0.03	98 ± 11	92 ± 4	93 ± 4				98 ± 1	100 ± 2	0.9989
Mesterolone M1	287 → 269	+	0.10	0.31				68 ± 14			99 ± 2	97 ± 1	0.9987
Metandienone	$301 \rightarrow 149$	+	0.01	0.04		83 ± 5	93 ± 5				98 ± 1	100 ± 2	0.9984
Metandienone M1	$301 \rightarrow 149$	+	0.02	0.07			72 ± 12				102 ± 3	100 ± 3	0.9994
Metandienone M2	299 → 281	+	0.004	0.01		114 ± 7	97 ± 9				100 ± 3	99 ± 1	0.9999
Metandienone M3	269 → 201	+	0.08	0.23				94 ± 8			99 ± 2	101 ± 2	0.9997
Methasterone	319 → 283	+	0.03	0.09			104 ± 11				95 ± 1	95 ± 2	0.9942
Methasterone M1	285 ightarrow 175	+	0.12	0.35				97 ± 12			97 ± 3	97 ± 1	0.9994
Metenolone	303 → 187	+	0.02	0.05			91 ± 7				102 ± 2	101 ± 3	0.9997
Metenolone M1	285 → 121	+	1.57	4.75							105 ± 9	106 ± 5	0.9924
Methyl-1-testosterone	303 → 201	+	0.01	0.03		101 ± 6	104 ± 3				98 ± 1	99 ± 1	0.9997
Methylstenbolone	317 → 201	+	0.005	0.014		104 ± 6	104 ± 2				96 ± 1	97 ± 1	0.9998
Methyltestosterone	$303 \rightarrow 109$	+	0.02	0.05			88 ± 7				96 ± 2	99 ± 1	0.9992
Methyltestosterone M1	$271 \rightarrow 161$	+	0.06	0.19				95 ± 6			97 ± 2	98 ± 1	0.9991
Methyltestosterone M2	$271 \rightarrow 175$	+	0.59	1.79						100 ± 14	99 ± 5	97 ± 3	0.9963
Nandrolone	$275 \rightarrow 109$	+	0.02	0.06			101 ± 7				103 ± 2	103 ± 2	0.9997
19-Norandrosterone	259 → 241	+	0.21	0.63						106 ± 5	105 ± 4	104 ± 4	0.9993
19-Noretiocholanolone	259 → 241	+	0.67	2.04							100 ± 4	100 ± 4	0.9958
Norethandrolone M1	$271 \rightarrow 175$	+	0.15	0.44				111 ± 13			97 ± 1	98 ± 1	0.9995
Norethandrolone M2	$271 \rightarrow 135$	+	0.08	0.25				80 ± 10			95 ± 3	98 ± 3	0.9999
Norethandrolone M3	287 → 243	+	0.08	0.24				71 ± 11			110 ± 3	104 ± 2	0.9930
Oxandrolone	307 → 271	+	0.05	0.16				99 ± 5			103 ± 3	103 ± 3	0.9992
Oxandrolone M1	289 → 229	+	0.11	0.32				75 ± 14			109 ± 4	106 ± 3	0.9990
Progesterone	$315 \rightarrow 97$	+	0.01	0.02		102 ± 6	73 ± 4				100 ± 1	100 ± 2	0.9989

Analyte	MRM	ESI	LOD	LOQ					%Accuracy	± %RSD			Linearity
	m/z						Low	spike			Medium spike	High spike	(<i>R</i> ²)
			(µg L ⁻¹)	(µg L ⁻¹)	0.01 µg L ⁻¹	0.04 µg L ⁻¹	0.08 µg L ⁻¹	0.31 µg L ⁻¹	0.63 µg L ⁻¹	1.25 μg L ⁻¹	5 μg L ⁻¹	10 µg L ⁻¹	
			n = 8	n = 8	n = 8	n = 7	n = 8	n = 8	n = 8	n = 8	n = 8	n = 8	N ≥ 5
Stanozolol M1	$345 \rightarrow 97$	+	0.03	0.10			117 ± 11	104 ± 6			99 ± 1	98 ± 1	0.9998
Stanozolol M1 gluc	$521 \rightarrow 345$	+	0.06	0.19				112 ± 5			109 ± 2	107 ± 3	0.9971
Stenabolic	438 → 125	+	0.01	0.03	95 ± 4	105 ± 5	78 ± 4				92 ± 2	97 ± 2	0.9970
Stenabolic M2	314 → 268	+	0.01	0.04	88 ± 21	107 ± 2	102 ± 5				96 ± 1	98 ± 2	0.9994
Stenabolic M6	283 → 125	+	0.05	0.14				94 ± 5			101 ± 2	102 ± 2	0.9974
Testolone	394 → 223	+	0.02	0.07			87 ± 10				100 ± 6	98 ± 4	0.9980
Testosterone	289 → 97	+	0.01	0.03		116 ± 4	94 ± 4				102 ± 1	102 ± 1	0.9999
Trenbolone	271 → 227	+	0.04	0.12			75 ± 21	107 ± 7			97 ± 2	98 ± 3	0.9992
Trenbolone M1	271 → 253	+	0.04	0.12			79 ± 19	103 ± 4			102 ± 1	102 ± 1	0.9992
DHCMT	317 ightarrow 155	+	0.01	0.02		99 ± 14	98 ± 4				98 ± 1	98 ± 2	0.9999
DHCMT M1	333 ightarrow 155	+	0.20	0.59						102 ± 5	99 ± 4	98 ± 2	0.9987
Method B													
19-Norandrosterone gluc	$451 \rightarrow 113$	-	0.64	1.93							104 ± 4	106 ± 4	0.9988
19-Noretiocholanolone gluc	$451 \rightarrow 113$	-	0.23	0.68					102 ± 11		101 ± 5	104 ± 4	0.9978
Andarine	440 → 261	-	0.01	0.02			110 ± 3				106 ± 4	103 ± 7	0.9970
Androsterone	273 → 255	+	1.48	4.47							91 ± 10	95 ± 9	0.9633
Androsterone gluc	$465 \rightarrow 113$	-	0.57	1.73							99 ± 4	98 ± 4	0.9951
Boldenone gluc	$461 \rightarrow 113$	-	0.07	0.20					106 ± 3		99 ± 3	100 ± 3	0.9979
Cardarine	454 → 257	+	0.01	0.04			113 ± 4				100 ± 3	94 ± 3	0.9866
Cardarine	452 → 138	-	0.01	0.02			118 ± 2				100 ± 3	96 ± 2	0.9929
Cardarine M1	486 → 257	+	0.02	0.06			108 ± 7				98 ± 1	98 ± 3	0.9974
Cardarine M1	484 → 426	-	0.02	0.06			116 ± 7				98 ± 3	99 ± 3	0.9988
Cardarine M2	470 → 256	+	0.02	0.06			115 ± 6				99 ± 2	98 ± 2	0.9978
Cardarine M2	468 → 212	-	0.01	0.03			112 ± 4				100 ± 2	99 ± 3	0.9986

Analyte	MRM	ESI	LOD	LOQ					%Accuracy	/ ± %RSD			inearity
	m/z						Low	spike			Medium spike	High spike	(<i>R</i> ²)
			(µg L ⁻¹)	(µg L⁻¹)	0.01 µg L ⁻¹	0.04 μg L ⁻¹	0.08 µg L ⁻¹	0.31 μg L ⁻¹	0.63 μg L ⁻¹	1.25 μg L ⁻¹	5 μg L ⁻¹	10 µg L ⁻¹	
			n = 8	n = 8	n = 8	n = 7	n = 8	n = 8	n = 8	n = 8	n = 8	n = 8	N ≥ 5
Clenbuterol	277 → 203	+	0.01	0.03			100 ± 4				98 ± 2	99 ± 2	0.9983
Drostanolone M1	287 → 269	+	0.24	0.72					119 ± 10		99 ± 3	94 ± 5	0.9957
Drostanolone M1 gluc	$479 \rightarrow 113$	-	0.62	1.88						82 ± 18	93 ± 7	99 ± 6	0.9969
Etiocholanolone	273 → 255	+	0.25	0.77					83 ± 15		98 ± 2	101 ± 3	0.9974
Ligandrol	337 → 267	-	0.12	0.37					105 ± 6		97 ± 7	100 ± 4	0.9980
Metandienone M3	269 → 213	+	0.11	0.35					103 ± 5		99 ± 2	98 ± 3	0.9985
Methasterone M1	285 ightarrow 161	+	0.26	0.78					110 ± 11		100 ± 2	97 ± 2	0.9979
Methyltestosterone M1	$271 \rightarrow 135$	+	0.10	0.29					99 ± 6		97 ± 2	98 ± 2	0.9988
Methyltestosterone M2	271 → 109	+	0.44	1.32						105 ± 10	100 ± 4	98 ± 3	0.9952
Norethandrolone M1	271 → 175	+	0.11	0.33					104 ± 5		98 ± 2	96 ± 3	0.9988
Norethandrolone M2	271 → 135	+	0.17	0.51					102 ± 8		98 ± 2	97 ± 3	0.9975
Stenabolic M6	283 → 125	+	0.05	0.15			114 ± 16		102 ± 5		102 ± 5	99 ± 3	0.9967
Stanozolol M1 gluc	519 → 343	-	0.08	0.24					106 ± 4		101 ± 5	102 ± 5	0.9981
Testolone	$348 \rightarrow 321$	-	0.05	0.16					95 ± 3		98 ± 3	100 ± 2	0.9992

Linearity (R^2) for all analytes in acidified and filtered wastewater was >0.995, with the exception of cardarine (method A: 0.994 & method B: 0.986 for positive ionisation; 0.992 for negative ionisation), methasterone (0.994), metenolone M1 (0.992), norethandrolone M3 (0.993), etiocholanolone (method A: 0.994), and androsterone (0.963). Limits of detection and limits of quantification ranged from 0.004 – 1.56 µg/L and 0.01 – 4.75 µg/L, respectively. Accuracies were 68 – 119%, and the precision (%RSD) range was 1 – 21% across all spiking levels and both methods. Data for each analyte can be found in Table S3.

Both LC methods demonstrated satisfactory performance and applicability for the detection and quantification of 59 anabolic agents in wastewater influent. Only cardarine showed <70% accuracy (68%) near the LOQ (method A), whereas all other compounds had satisfactory accuracies of 70 – 130% at or near their LOQs. At low, medium and high concentration levels, all analytes had RSD values below 20%, with the exception of trenbolone and stenabolic M2 (method A) which had an RSD of 21% at the low spike. The performance of the instrument methods was evaluated before the in-sewer samples were analysed, and it was concluded that both LC-MS/MS methods were suitable for the intended purpose. It should be noted that slightly different results may be obtained if this experiment was repeated with wastewater from a different WWTP, as background noise and interferences may differ.

Typical parameters of the feeding raw sewage¹

The real sewage is weekly collected from a pump station in Brisbane (Australia). Wastewater in this residential area is the typical domestic sewage with pH 7.5, low sulfide (<3 mgS/L), 10 - 30 mgS/L sulfate, low methane (<5 mgCOD/L), 180 - 200 mg/L SCOD with 50 mgCOD/L acetate and 10 - 20 mgCOD/L propionate as the major VFAs contents, 200 - 400 mg/L TSS, and 180 - 380 mg/L VSS. The collected fresh sewage is stored in a cold room under 4°C to minimise biological reactions. The feeding sewage is heated by a thermoregulator in a water bath to room temperature before entering the reactor.

Statistical analysis

Equations applied are as follows:

For zero order kinetics (eq1):

$$\frac{C_t}{C_0} = -k_0 \times t_i + e$$

For first order kinetics (eq2):

$$\frac{C_t}{C_0} = f_f \times e^{-k_f t_i}$$

For two-phase kinetics (eq3):

$$\frac{C_t}{C_0} = f_f \times e^{-k_f t_i} + f_s \times e^{-k_s t_i}$$

Parameters:

- C_0 : concentration at time zero
- $k_0\!\!:$ the rate of degradation for zero order degradation
- e: intercept of the zero-order degradation
- f_f: the fraction of compound degraded during the fast reaction
- k_f: the rate of fast degradation
- fs: the fraction of compound degraded during the slow reaction
- k_s: the rate of slow degradation
- t_i: time

In equations eq1, eq2, and eq3 the fraction C_t/C_0 was replaced by 90, 50, and 10 for 10, 50, and 90% reduction, respectively. During the next step those equations were solved for t_i in order to estimate the transformation times.

 C_t : concentration at time t

Quality assurance and control

Mean recoveries (n=4) ranged from 89-118%, exceptions being drostanolone M1 (141%), drostanolone M1 gluc (134%), fluoxymesterone M1 (42%), fluoxymesterone M2 (121%), mesterolone M1 (122%), metandienone M3 (169%), methyltestosterone M2 (125%), androsterone (123%), etiocholanolone (137%), cardarine M1 (143%), cardarine M2 (166%), and YK-11 (133%), and the mean duplicate differences ranged from 0.8-14.5% across all biomarkers (Table S4).

Table S4. QAQC results for each biomarker. Recovery mean % was calculated by subtracting the concentration of the analyte in the wastewater sample from the concentration of the spiked sample and dividing that by the non-extracted side spike. QC accuracy is the accuracy of the 10 μ g/L calibration solution reinjected during the run compared to the calibration curve.

	Recovery mean %	Duplicate	QC Accuracy %
Analyte	±SD (n=4)	difference mean %	
		(n=7)	
Boldenone	110±11	1.4	101
Boldenone gluc	101±4	3.1 (n=3)	95
Boldenone M1	104±10	3.4	101
Clostebol M1	103±10	3.3	99
Drostanolone M1	141±8	6.4	107
Drostanolone M1 gluc	134±11	14.0 (n=5)	79
Estrone	104±12	3.8	95
Fluoxymesterone	100±13	6.8	91
Fluoxymesterone M1	42±7	5.5	115
Fluoxymesterone M2	121±8	4.3	107
Mesterolone M1	122±13	3.4	103
Methyl-1-testosterone	109±9	3.5 (n=6)	105
Metandienone	115±6	3.8	101
Metandienone M1	134±18	3.0	105
Metandienone M2	93±6	2.3	100
Metandienone M3	169±34	7.6	106
Methasterone	107±6	3.6	109
Methasterone M1	118±11	6.1 (n=5)	104
Metenolone	112±9	5.2	98
Metenolone M1	103±8	3.2	102
Methylstenbolone	110±4	4.7	106
Methyltestosterone	103±8	2.8	99

Methyltestosterone M1/Norethandrolone M2	116±12	2.7	107
Methyltestosterone M2	125±14	4.0	103
Nandrolone	102±7	2.1	100
19-Norandrosterone	104±12	4.2	106
19-Norandrosterone gluc	108±8	5.7 (n=4)	97
19-Noretiocholanolone	106±12	4.1	105
19-Noretiocholanolone gluc	105±6	1.7 (n=4)	95
Norethandrolone M1	115±11	3.6	108
Norethandrolone M3	107±8	4.0	99
Progesterone	117±10	4.6 (n=5)	100
Oxandrolone	111±31	7.5	82
Oxandrolone M1	117±18	6.5	102
Testosterone	105±7	0.8	101
Androstenedione	102±4	4.0 (n=6)	106
Androsterone	123±6	7.6	97
Androsterone gluc	108±13	3.6 (n=3)	95
Epitestosterone	109±11	5.6	101
Etiocholanolone	137±30	5.0	101
Stanozolol M1	92±17	2.0	101
Stanozolol M1 gluc	116±8	5.7 (n=4)	100
Trenbolone	114±11	2.4	105
Trenbolone M1	101±16	3.2	98
DHCMT	113±16	3.1	98
DHCMT M1	95±7	2.4	100
Andarine	106±5	4.2	92
Cardarine	96±28	7.8	112
Cardarine M1	143±23	14.5	105
Cardarine M2	166±31	9.8	95
Clenbuterol	104±5	1.7	104
Enbosarm	105±6	6.1	96
Ligandrol	103±8	7.3	100
Stenabolic	101±11	9.3	111
Stenabolic M2	97±23	6.3 (n=6)	101
Stenabolic M6	105±8	5.5 (n=4)	103
Testolone	89±6	7.0	96
YK-11	133±11	8.1 (n=6)	n.a.

Cardarine had a NESS value of 1.28 μ g/L which was 74% lower than the theoretical spiked value. To investigate this, additional experiments were conducted. To assess how filtering and the methanol content affected recovery of cardarine, solutions of 2.5 μ g/L were prepared in filtered and acidified wastewater with 10%, 20%, 30%, 50% and 100% MeOH. An additional vial was prepared, where unfiltered wastewater (with 20% MeOH) was fortified to 2.5 μ g/L and subsequently filtered. The experiments confirmed that the MeOH content, as well as the filtering process, had an impact on the concentration of cardarine in wastewater. Calculated concentrations for cardarine were as follows: 10% – 1.3 μg/L, 20% (%MeOH in calibration solutions) – 2.4 μg/L, 30% - 4.1 μg/L, 50% - 4.6 µg/L and 100% - 4.6 µg/L, which translates to recoveries of 52%, 96%, 164%, 184%, and 184%, respectively. This suggests that solubility is a contributing factor for this biomarker and results should be interpreted with caution when analysing an aqueous matrix. Another significant amount of cardarine was lost through filtering, as the concentration after filtering (with 20% MeOH) was 0.9 µg/L (vs 2.5 μ g/L). This is likely due to its high logP value (5.85) and therefore, having a higher affinity to the particulates and/or filter than the aqueous wastewater. Overall, around 50% was lost through only having 10% MeOH as opposed to the 20% in the calibration, and 63% was lost due to filtration. All other analytes (except glucuronides) were investigated also, and no notable losses were observed with differences in methanol content or the filtering process.

In addition, a subsequent in-sample stability experiment (currently unpublished) revealed that wastewater preservation with HCl led to a 98% lower initial concentration of cardarine than the theoretical spiked value, whereas the initial concentration in unpreserved and sodium metabisulfite preserved wastewater was within the expected range. It is possible that the HCl-preserved wastewater had a pH value slightly below 2.14, which, according to ChemAxon prediction (as reported by DrugBank (https://go.drugbank.com/drugs/DB05416, accessed 29/07/2021)), is the strongest basic pKa of cardarine, whereas the pH of the calibrations series solutions may have been slightly above this pH level. As samples were preserved with HCl, this is likely a significant contributing factor, explaining a portion of the 92% decrease in initial concentration for cardarine in this study.

It is difficult to estimate which of these three factors played the largest role in the loss or lower detected concentrations of cardarine, as these are preliminary findings. If this biomarker were to be used in future experiments, losses due to filtering, methanol content in the sample, and pH values should be assessed in more detail.

S22

Figure S1. Scatter dot plot of measured concentration of analytes in t_0 as a percentage of the spiked theoretical concentration in all three reactor types with mean (black line) and standard deviation.

Figure S2. Scatter plot of anabolic agent (N=59) logP value vs their concentration at t_0 divided by the theoretical concentration at which they were spiked (RM%). Red trend line represents a simple linear regression. Black dotted lines represent the 95% confidence interval of the slope.

Stability of metabolites and parent analytes

Table S5. Values for parameters of zero order, first order and two-phase equations for all biomarkers in the control reactor, gravity sewer reactor and rising main reactor. Bolded values are from the model of best fit. For equations and parameter descriptions, please refer to the "Statistical analysis" section.

Analyte	Control reactor									Gravity sewer reactor Rising main reactor														
	Zero	order	First	order		Two-p	hase		Zero o	order	First	order		Two-p	hase		Zero o	rder	First	order		Two-	phase	
	k ₀	е	f _f	k _f	f_f	k _f	f_s	ks	k ₀	е	f _f	k _f	f _f	k _f	f_s	ks	k ₀	е	f _f	$k_{\rm f}$	f _f	k _f	f_s	ks
Boldenone	-5.165	121.9	121.4	-0.040	-49.2	-1.056	148.6	-0.042	-9.795	100.4	116.1	-0.233	2.7E+07	-0.104	-2.7E+07	-0.104	-6.746	56.9	100.0	-0.906	-5.2E+05	-1.223	5.2E+05	-1.223
Boldenone gluc	-6.633	56.0	100.0	-0.971	4.6E+06	-0.669	-4.6E+06	-0.669	-6.175	51.4	100.0	-1.111	4.4E+05	-0.835	-4.4E+05	-0.835	-4.811	39.1	100.0	-1.999	100.0	-1.998	0.0	-0.158
Boldenone M1	-3.471	92.2	95.8	-0.050	8.4	-2.264	91.7	-0.043	-7.765	86.0	99.5	-0.216	2.2	-67.222	97.8	-0.212	-6.270	53.0	99.9	-1.019	64.3	-1.335	35.8	-0.652
Clostebol M1	-1.396	95.6	96.0	-0.016	5.8	-42.690	94.2	-0.013	-6.480	82.3	92.3	-0.169	27.5	-1.107	72.3	-0.124	-6.294	68.9	89.1	-0.315	54.1	-1.195	45.6	-0.136
Drostanolone M1	-4.402	94.0	96.7	-0.067	15.4	-0.841	86.3	-0.051	-6.716	83.2	95.3	-0.184	60.8	-0.411	38.6	-0.067	-5.635	63.9	88.2	-0.387	71.2	-1.095	28.1	-0.066
Drostanolone M1 gluc	-6.745	97.7	101.5	-0.102	-8.3E+06	-0.162	8.3E+06	-0.162	-9.082	83.1	105.6	-0.340	9.1E+05	-0.181	-9.1E+05	-0.181	-6.307	52.3	100.0	-0.880	9.1E+05	-0.636	-9.1E+05	-0.636
Estrone	3.824	98.7	99.9	-0.007	-4.8	-0.656	103.2	-0.011	-4.727	90.3	95.3	-0.083	45.2	-0.319	56.0	-0.024	-5.009	72.8	82.0	-0.147	52.8	-1.210	46.4	-0.052
Fluoxymesterone	-0.029	98.8	98.9	0.000	98.3	0.002	0.0	2.822	-7.302	97.8	104.6	-0.134	1.1E+07	-0.062	-1.1E+07	-0.062	-7.466	69.3	98.9	-0.489	89.6	-0.594	10.5	-0.131
Fluoxymesterone M1	1.483	96.5	96.8	0.014	98.0	0.008	0.0	2.823	-0.753	98.3	99.0	-0.008	17.3	-0.299	84.4	0.007	-0.496	97.2	97.3	-0.005	7.0	-1.396	93.8	-0.001
Fluoxymesterone M2	-0.721	98.9	98.7	-0.006	98.9	-0.007	0.0	2.829	-4.720	87.7	92.3	-0.088	35.2	-0.472	63.5	-0.039	-5.258	73.1	84.3	-0.170	56.8	-0.959	42.8	-0.051
Mesterolone M1	-5.732	94.5	99.4	-0.104	9.7	-0.624	91.5	-0.089	-6.985	80.9	94.6	-0.212	38.1	-0.633	61.2	-0.138	-6.128	63.0	91.6	-0.487	64.1	-1.287	35.4	-0.147
Methyl-1- testosterone	2.177	116.3	101.6	-0.047	-3.4	-43.398	103.4	-0.049	-7.015	61.1	100.8	-0.542	-5.1E+05	-0.929	5.1E+05	-0.928	-6.411	53.3	100.0	-1.410	18.2	-51.339	81.8	-1.335
Metandienone	1.807	102.5	103.5	0.001	-8.7E+05	-0.060	8.7E+05	-0.060	-8.401	86.6	101.8	-0.254	9.2E+05	-0.156	-9.2E+05	-0.156	-6.495	55.1	99.9	-0.878	99.8	-0.884	0.2	0.014
Metandienone M1	-0.731	101.7	100.4	-0.006	-38.8	-0.099	138.3	-0.024	-8.331	84.3	100.9	-0.278	4.6E+06	-0.200	-4.6E+06	-0.200	-6.016	50.5	100.0	-1.024	15.6	-58.052	84.4	-0.939
Metandienone M2	-0.081	96.7	97.4	-0.001	4.3	-3.310	95.8	0.001	-6.981	96.6	102.4	-0.126	7.4E+05	-0.053	-7.4E+05	-0.053	-7.684	68.3	100.6	-0.568	-5.5	-62.175	105.5	-0.598
Metandienone M3	-2.118	92.9	93.6	-0.027	14.3	-1.923	86.0	-0.017	-7.866	83.0	99.0	-0.252	4.6	-1.581	95.4	-0.241	-6.512	55.9	100.0	-0.858	23.0	-63.181	77.0	-0.598
Methasterone	-1.268	103.9	103.4	-0.013	-4.7E+04	-0.028	4.7E+04	-0.028	-6.033	91.2	97.8	-0.121	90.2	-0.200	10.4	0.073	-5.042	66.9	81.8	-0.220	67.2	-1.475	32.7	-0.034
Methasterone M1	-4.539	91.0	96.3	-0.075	26.0	-0.503	74.4	-0.044	-5.890	84.3	95.0	-0.159	45.3	-0.468	54.6	-0.082	-5.219	60.2	86.0	-0.423	67.5	-1.542	31.9	-0.080
Metenolone	-5.048	99.2	100.4	-0.061	101.8	-0.072	0.0	2.820	-7.869	87.6	98.8	-0.216	96.6	-0.235	3.1	0.013	-6.598	61.8	97.5	-0.637	86.4	-0.922	13.7	-0.109
Metenolone M1	-2.487	96.6	97.4	-0.030	3.8	-52.209	96.2	-0.029	-5.337	86.6	91.9	-0.105	24.0	-0.867	75.3	-0.074	-5.740	71.6	85.5	-0.215	53.2	-1.123	46.5	-0.087

Analyte	Control reactor									Gravity sewer reactor								Rising main reactor							
	Zero	order	First	order		Two-p	ohase		Zero o	order	First	order		Two-p	hase		Zero o	rder	First	order		Two-	phase		
	k ₀	е	f _f	k _f	f _f	k _f	f _s	ks	k ₀	е	f _f	k _f	f _f	k _f	fs	ks	k ₀	е	f_f	k _f	f _f	k _f	f _s	ks	
Methylstenbolone	0.227	103.1	103.2	0.001	-4.5	-9.245	104.5	0.000	-7.018	90.8	99.9	-0.155	96.1	-0.189	5.2	0.051	-6.166	64.1	91.5	-0.456	61.1	-1.687	38.8	-0.149	
Methyltestosterone	-2.835	100.6	101.2	-0.033	1.2E+06	-0.004	-1.2E+06	-0.004	-8.568	82.5	102.3	-0.331	7.8E+04	-0.234	-7.8E+04	-0.234	-5.330	43.9	100.0	-1.585	99.0	-1.613	1.0	-0.246	
Methyltestosterone M1/Norethandrolone M2	-3.561	95.6	97.2	-0.049	17.1	-0.396	83.2	-0.033	-6.503	85.5	95.2	-0.156	38.1	-0.478	61.5	-0.095	-6.017	65.9	88.2	-0.355	62.2	-1.155	37.2	-0.114	
Methyltestosterone M2	-1.698	96.6	96.7	-0.020	12.6	-0.627	88.1	-0.009	-4.467	86.9	91.0	-0.080	37.9	-0.482	60.9	-0.030	-4.985	70.6	80.0	-0.159	49.8	-1.465	49.6	-0.066	
Nandrolone	-5.085	100.4	101.1	-0.053	100.7	-0.065	1.3	0.190	-8.569	83.9	103.3	-0.299	1.4E+06	-0.195	-1.4E+06	-0.195	-5.995	50.0	100.0	-1.156	-3.9E+05	-1.293	3.9E+05	-1.293	
19-Norandrosterone	-1.503	99.4	99.5	-0.017	99.3	-0.022	0.8	0.184	-5.638	87.8	93.9	-0.113	33.9	-0.473	66.1	-0.066	-5.827	71.0	84.8	-0.223	51.0	-1.265	48.5	-0.101	
19-Norandrosterone gluc	-8.414	80.4	100.2	-0.323	3.6E+06	-0.202	-3.6E+06	-0.202	-8.111	71.1	101.4	-0.506	1.5E+07	-0.312	-1.5E+07	-0.312	-5.681	46.6	100.0	-1.274	164.0	-1.104	-64.0	-0.877	
19- Noretiocholanolone	-2.466	96.2	97.9	-0.034	12.4	-0.486	88.0	-0.020	-4.427	87.8	92.2	-0.081	40.2	-0.452	59.5	-0.027	-5.182	74.8	84.2	-0.150	50.0	-0.989	49.1	-0.057	
19-Noretio- cholanolone gluc	-6.243	52.1	100.0	-1.087	8.3E+06	-0.837	-8.3E+06	-0.837	-5.745	47.5	100.0	-1.355	3.4E+05	-1.032	-3.4E+05	-1.032	-4.611	37.3	100.0	-5.194	100.0	-3.216	0.0	0.752	
Norethandrolone M1	-1.492	99.3	98.8	-0.012	5.9	-0.595	94.8	-0.008	-6.109	84.8	93.4	-0.142	40.4	-0.474	58.3	-0.077	-5.535	65.1	84.4	-0.303	61.6	-1.344	37.9	-0.090	
Norethandrolone M3	-1.020	100.9	100.6	-0.010	100.9	-0.012	0.0	2.816	-3.326	95.5	97.1	-0.045	26.5	-0.309	74.1	-0.017	-4.493	79.9	85.4	-0.098	43.6	-0.853	55.6	-0.035	
Progesterone	-8.748	85.3	104.6	-0.307	1.3E+07	-0.203	-1.3E+07	-0.203	-8.169	71.9	100.2	-0.715	-1.7	-47.749	101.7	-0.727	-4.603	37.3	100.0	-5.203	135.8	-2.225	-35.8	-1.891	
Oxandrolone	0.582	99.6	98.1	0.007	-2.7E+05	-0.021	2.7E+05	-0.021	-1.857	97.3	98.3	-0.023	60.0	-0.175	44.2	0.045	-3.410	86.8	88.9	-0.054	33.2	-0.763	66.4	-0.017	
Oxandrolone M1	0.643	95.0	95.6	0.006	-5.6E+04	-0.016	5.7E+04	-0.016	-1.792	91.2	91.6	-0.023	94.1	-0.036	0.0	0.920	-2.755	79.5	82.4	-0.052	48.8	-0.677	49.1	0.014	
Testosterone	-6.694	95.2	99.9	-0.082	100.6	-0.089	0.0	0.484	-8.388	79.1	101.7	-0.363	2.3E+06	-0.256	-2.3E+06	-0.256	-5.295	43.6	100.0	-1.583	8.1	-52.643	91.9	-1.496	
Androstenedione	-2.949	79.6	100.4	-0.029	29.1	-2.353	71.0	-0.027	-7.920	73.3	100.6	-0.384	-2.8E+03	-0.544	2.9E+03	-0.536	-4.627	37.6	100.0	-8.219	100.0	-39.279	0.0	-1.881	
Androsterone	-4.497	93.0	96.0	-0.069	14.0	-0.652	85.7	-0.054	-6.174	84.2	93.2	-0.149	37.7	-0.570	61.5	-0.086	-5.369	70.9	82.9	-0.191	53.3	-1.217	46.2	-0.074	
Androsterone gluc	-7.294	62.7	100.0	-0.678	110.6	-0.635	-10.8	-0.340	-6.874	57.7	100.3	-0.804	8.7E+05	-0.544	-8.7E+05	-0.544	-5.011	40.7	100.0	-1.718	8.9E+05	-1.117	-8.9E+05	-1.117	
Epitestosterone	-2.180	96.9	97.2	-0.023	4.3	-4.289	95.7	-0.022	-8.307	80.0	100.9	-0.330	4.6E+05	-0.243	-4.6E+05	-0.243	-4.935	40.4	100.0	-1.913	96.2	-1.800	3.8	-0.719	
Etiocholanolone	-2.181	89.9	91.0	-0.030	43.2	-0.417	56.7	0.031	-1.575	92.4	93.0	-0.020	16.2	-0.783	83.1	-0.006	-1.437	99.2	99.4	-0.016	100.2	-0.020	0.0	2.817	
Stanozolol M1	-0.831	95.6	95.9	-0.011	23.3	-0.251	76.6	0.012	-5.641	88.5	95.2	-0.114	39.4	-0.459	61.5	-0.056	-5.221	67.0	81.8	-0.228	62.3	-1.192	37.0	-0.058	
Stanozolol M1 gluc	-4.822	39.2	100.0	-2.055	100.4	-2.043	-0.4	-0.711	-4.429	35.8	100.0	-2.474	100.0	-40.807	0.0	-2.295	-4.154	33.4	100.0	-6.053	100.0	-35.703	0.0	-2.858	
Trenbolone	-2.432	103.6	100.0	-0.009	103.6	-0.042	0.0	1.139	-7.178	90.5	99.4	-0.170	70.5	-0.422	30.8	-0.032	-6.002	67.8	92.6	-0.364	78.6	-0.925	21.2	-0.028	

Analyte	Control reactor								Gravity sewer reactor									Rising main reactor							
	Zero order First order			Two-phase				Zero order		First order		Two-phase				Zero order		order	Two-phase						
	k ₀	е	f _f	k _f	f _f	k _f	fs	ks	k ₀	е	f _f	k _f	f _f	k _f	fs	ks	k ₀	е	f _f	k _f	f _f	k _f	f_s	ks	
Trenbolone M1	-0.426	96.5	96.6	-0.005	5.0	-4.457	95.0	-0.003	-4.363	89.8	93.8	-0.074	31.4	-0.449	68.0	-0.034	-4.509	81.6	86.3	-0.093	37.0	-0.988	62.5	-0.045	
DHCMT	-0.729	102.6	102.0	-0.006	-15.4	-0.275	115.4	-0.019	-8.529	91.0	99.8	-0.254	116.9	-0.198	-17.6	-0.089	-6.976	60.4	100.0	-0.802	10.4	-54.245	89.6	-0.723	
DHCMT M1	-0.417	97.6	97.6	-0.004	3.9	-47.800	96.1	-0.002	-7.160	96.3	102.9	-0.133	4.1E+06	-0.069	-4.1E+06	-0.069	-8.116	71.5	101.3	-0.490	5.1E+07	-0.307	-5.1E+07	-0.307	
Andarine	-1.473	99.9	100.1	-0.016	-6.6E+06	-0.076	6.6E+06	-0.076	-8.470	81.1	102.6	-0.339	1.2E+06	-0.228	-1.2E+06	-0.228	-5.922	50.1	100.0	-1.010	18.2	-54.042	81.8	-1.084	
Cardarine	1.156	96.7	93.8	0.018	96.6	-0.052	4.4	0.250	-5.747	94.9	93.5	-0.096	68.7	-0.264	33.9	0.004	-6.115	90.2	85.0	-0.113	50.9	-0.851	49.0	-0.029	
Cardarine M1	-1.183	92.3	93.2	-0.016	12.0	-2.753	88.2	-0.009	-3.026	88.8	90.4	-0.044	16.3	-2.473	83.7	-0.033	-4.549	87.3	91.6	-0.084	88.8	-0.179	8.6	0.120	
Cardarine M2	-0.169	92.2	92.5	-0.003	21.6	-1.233	79.2	0.020	-4.232	95.9	98.9	-0.066	68.6	-0.148	32.8	0.012	-7.106	85.7	99.1	-0.193	92.9	-0.264	8.7	0.035	
Clenbuterol	-0.115	103.0	100.1	-0.003	-3.7	-11.050	103.7	-0.003	-2.532	95.4	96.3	-0.032	25.7	-0.325	74.4	-0.005	-4.077	81.3	85.4	-0.082	42.9	-0.826	56.9	-0.024	
Enbosarm	-1.235	97.0	97.8	-0.015	3.7	-2.064	96.3	-0.013	-5.251	85.5	91.9	-0.107	46.0	-0.378	52.5	-0.041	-5.105	68.3	82.1	-0.195	63.4	-1.153	35.4	-0.043	
Ligandrol	-1.057	96.6	97.3	-0.012	6.4	-1.560	94.3	-0.007	-4.906	86.5	92.3	-0.095	55.3	-0.318	44.4	-0.016	-4.835	69.1	79.4	-0.160	59.8	-1.059	39.4	-0.041	
Stenabolic	-6.212	81.5	93.7	-0.163	13.9	-5.666	86.1	-0.144	-8.156	77.5	100.6	-0.381	100.9	-0.383	0.0	0.423	-5.686	48.0	100.0	-1.173	78.3	-1.584	21.7	-0.455	
Stenabolic M2	-7.877	104.8	108.8	-0.124	2.7E+06	-0.004	-2.7E+06	-0.004	-7.349	63.3	99.9	-0.672	1.8E+04	-0.496	-1.8E+04	-0.495	-4.031	32.4	100.0	-9.179	100.0	-6.118	0.0	2.702	
Stenabolic M6	-9.275	93.0	108.2	-0.249	5.1E+05	-0.114	-5.1E+05	-0.114	-5.710	47.3	100.0	-1.265	24.8	-52.821	75.2	-1.090	-3.710	29.6	100.0	-10.560	1.2E+04	-3.283	-1.2E+04	-3.281	
Testolone	-0.624	101.0	100.4	-0.006	56.1	-0.016	44.5	0.005	-5.207	91.0	97.4	-0.098	76.0	-0.235	27.3	0.023	-5.206	72.2	85.7	-0.179	66.9	-0.842	33.7	-0.025	
YK-11	-1.927	96.1	98.5	-0.024	-5.2E+06	-0.057	5.2E+06	-0.057	-7.876	81.1	98.7	-0.258	97.9	-0.251	0.0	2.776	-5.907	49.4	100.0	-1.110	6.6E+05	-0.837	-6.6E+05	-0.837	
Paracetamol	-0.112	99.8	100.0	-0.002	0.4	-0.563	99.6	-0.002	-6.865	98.8	104.0	-0.118	3.1E+07	-0.046	-3.1E+07	-0.046	-7.492	65.5	100.3	-0.586	-1.9E+06	-0.889	1.9E+06	-0.889	
Acesulfame	0.081	100.6	100.1	0.001	-0.5	-2.618	100.5	0.001	-0.089	101.6	100.8	0.000	-1.3	-43.282	101.3	-0.001	-0.028	99.8	99.9	0.000	100.3	-0.002	0.0	2.821	

Steroid glucuronides

Table S6. Initial (t_0) concentrations of glucuronides, maximum measured concentrations of deconjugated biomarker, and maximum deconjugation of glucuronides (%) in CR, GS, and RM. The percent of initial glucuronide concentration that was transformed was determined at the maximum value observed for its non-glucuronidated form over 12h.

Glucuronide	DRO M1 [*]	19-NA [*]	19-NE [*]	ADS [*]	STZ M1 [*]
t ₀ concentration [CR] (μg/L)	5.8	9.8	9	12.9	3.3
t ₀ concentration [GS] (μg/L)	5.2	8.4	7	10	2.2
t_0 concentration [RM] (µg/L)	5.2	7.9	6.7	9.4	2.2
Maximum measured concentration of	0.9	4.7	5.6	2.1	2.9
non-glucuronide [CR] (μg/L)					
Maximum measured concentration of	0.6	2.9	4.3	1.9	2.2
non-glucuronide [GS] (μg/L)					
Maximum measured concentration of	0.4	1.9	3.1	1.6	1.4
non-glucuronide [RM] (μg/L)					
t ₀ concentration transformed [CR]	16%	48%	62%	16%	88%
t ₀ concentration transformed [GS]	12%	35%	61%	19%	100%
t ₀ concentration transformed [RM]	8%	24%	46%	17%	64%

^{*}DRO M1: Drostanolone M1, 19-NA: 19-Norandrosterone, 19-NE: 19-Noretiocholanolone, ADS: Androsterone, STZ M1: Stanozolol M1

1. Li, J., Gao, J., Thai, P.K., Sun, X., Mueller, J.F., Yuan, Z., and Jiang, G., *Stability of Illicit Drugs as Biomarkers in Sewers: From Lab to Reality.* Environ. Sci. Technol., 2018. **52**(3): p. 1561-1570.