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Abstract: Monitoring water quality is critical for mitigating risks to human health and the environment.
It is also essential for ensuring high quality water-based and water-dependent products and services. The
monitoring and detection of chemical contamination are often based around a small set of parameters
or substances. Conventional monitoring often involves the collection of water samples in the field and
subsequent analyses in the laboratory. Such strategies are expensive, time consuming, and focused
on a narrow set of potential risks. They also induce a significant time delay between a contamination
event and a possible reactive measure. Here, we developed a real-time monitoring system based
on Artificial Intelligence (AI) for field deployable sensors. We used data obtained from full-scan
UV-spec and fluorescence sensors for validation in this study. This multi-sensor system consists of
(a) anomaly detection that uses multivariate statistical methods to detect any anomalous state in an
aqueous environment and (b) anomaly identification, using Machine Learning (ML) to classify the
anomaly into one of the a priori known categories. For a proof of concept, we tested this methodology on
a supply of municipal drinking water and a few representative organic chemical contaminants applied
in a laboratory-controlled environment. The outcomes confirm the ability for the multi-sensor system to
detect and identify changes in water quality due to incidences of chemical contamination. The method
may be applied to numerous other areas where water quality should be measured online and in real
time, such as in surface-water, urban runoff, or food and industrial process water.

Keywords: quality; monitoring; ML; AI; UV-spec; fluorescence; sensors

1. Introduction

Water-related issues will grow more pressing in the coming years. Water quality and
availability will face substantial challenges as ever-growing populations in expanding
global economies deal with the effects of climate change. The quality of water is critical
for human development and ecosystem services [1]. This goes beyond conventional pollu-
tants and metrics of water-quality such as nitrogen, phosphorous, pH, dissolved oxygen,
conductivity, turbidity, and dissolved organic carbon [2]. The United States Environmental
Protection Agency (USEPA) hosts a database of over 900 thousand chemicals in its effort to
minimize risks to public health and the environment as a result of any unintended conse-
quences resulting from the use of chemicals [3]. To guarantee proper resource management,
low-cost systems for monitoring water quality and detecting anomalies arising from a vast
array of potential chemical contaminants are required.

A key aspect of such systems will be their capacity to provide warnings for changes
in quality that may represent a risk to human health and the environment, as well as for
the quality of products and services that use water. The importance of timeliness in such
warnings means that a comprehensive investigation that takes hours or days is insufficient.
Thus, online and real-time data are required for measurable impact in this regard.

To detect organic chemical pollutants in water, optical sensors based on absorption
spectroscopy in the ultraviolet and visible range of the light spectrum (UV-spec) can be
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used. Furthermore, a complete (200–360 nm) spectrum assessment can reveal the types
of substances present [4]. The use of fluorescence spectroscopy to detect and identify
pollutants is also common [5]. The simultaneous monitoring of both absorbance and
fluorescence changes can be an effective method for analyzing water quality online and in
real time. Combined measurements of both absorbance and fluorescence can be used to
build statistical models of normal and contaminated water.

The first aim of this study was to build an Artificial Intelligence (AI) tool, which
can warn of a measurable change in water quality in real time based on the statistical
models. The detection of such an occurrence could lead to a variety of measures, including
automatic sample collection for further analysis. The second aim was to investigate the
efficiency of such a system at classifying the cause of measurable changes in water quality
(that is, not only detecting an anomaly but also indicating the nature of the anomaly). For
this, the power of combining full-spectrum UV-spec and multi-channel fluorescence data
was investigated.

2. Materials and Methods
2.1. Materials

Municipal drinking water from Oslo (Norway) was used for all benchmarking experi-
ments in this study. The supply was obtained from Maridalsvannet lake, which has a surface
area of 3.8 square kilometers. Normal variations in physiochemical parameters of the supply
include pH 7.37–7.55, conductivity 8.7–10.0 mS/m, and turbidity 0.05–0.12 FTU [6].

The focus of the AI development was to establish a means of categorizing “normality”
(i.e., normal water quality) within a given aqueous environment such that any deviation
from that normality can be detected. To push the water outside the bounds of this defined
normality, some chemicals were selected as model contaminants and added to the respective
water samples. No list could ever adequately cover the breadth of potential chemical
contaminants in water; thus, the choice of substances for this study is not expected to be
exhaustive. The list includes a small number of substances that represent a set of potential
use cases only.

6-chloronicotinic acid (6CNA, CAS 5326-23-8) is a degradation product of neonicoti-
noid insecticides imidacloprid and acetamiprid. 2-mercaptobenzothiazole (MBT, CAS
149-30-4) is a probable carcinogen used in the vulcanization of rubber, which may come
into contact with potable water and potentially from vehicle tire-wear-related pollution [7].
Creatinine (CTN, CAS 60-27-5) is excreted in human urine in conjunction with protein
metabolism. It provides an excellent biomarker for urinary contamination [8]. Trypto-
phan (TPN, CAS 54-12-6) is an amino acid that is present in many foods that are rich in
proteins. Some organic matter also fluoresces at the same wavelengths as tryptophan [9].
The presence of organic matter in water, such as sewage and farm wastes, is linked to
‘tryptophan-like’ fluorescence [10]. Spiking solutions of each of 6CNA, MBT, CTN, and TPN
at 0.1 mg/mL were prepared in 20% methanol in water. Pyrene (PYR, CAS 129-00-0) and
Benzo(a)pyrene (BAP, CAS 50-32-8) are polycyclic aromatic hydrocarbons (PAH) produced
in a wide range of combustion reactions, including vehicle engines [11]. Spiking solutions
of PYR and BAP at 0.1 mg/mL were prepared in acetonitrile. The six chemicals, 6CNA,
MBT, CTN, TPN, PYR, and BAP, were supplied by Merck Life Science AS (Oslo, Norway).

2.2. Experimental Setup

The setup comprised three field deployable sensors, a full scan UV-spec spectrom-
eter, and two fluorometers. The UV-spec spectrometer (TriOS, OPUS) had a resolution
of 0.8 nm/pixel and measured spectrum over the range between 200 and 360 nm [12].
One of the fluorometers (TriOS, enviroFlu) was designed to detect polycyclic aromatic
hydrocarbons (PAH) in water with excitation/emission wavelengths of 254/360 nm [13]
The other fluorometer (TriOS, matrixFlu VIS) was a general-purpose unit [14], and we
found excitation/emission wavelengths of 375/460 nm relevant for these studies.
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All sensors were submerged in a water container with an inlet connected to the tap
water and an outlet with a plug. Such a setup allowed for continuous flow-through at a
replenishment rate of 2–4 cycles per hour when both the tap and the plug were opened.
Three small aquarium pumps were installed to improve circulation and to prevent bubbles
from accumulating on the sensor lenses. The entire setup was covered with a thick black
plastic cover to avoid surrounding light interferences.

2.3. Data Acquisition and Pre-Processing
2.3.1. Data Acquisition

To establish systematic variabilities, drinking water was measured with continuous
flow-through over a period of a few days (4–14). UV-spec data were recorded every minute,
and fluorometer measurements were triggered every 30 s. We collected three datasets of
26,318, 7798, and 6453 points, which constituted baseline absorbance, baseline fluorescence
254/360, and baseline fluorescence 375/460, respectively, for statistical analysis. We define
Absorbance variability ∆Abso as the difference between absorbance measured at a given
point in time and the mean absorbance over the entire data-collection period. Similarly,
fluorescence variability ∆Fl is the difference between the fluorescence measured at a given
point in time and the mean fluorescence over the entire data collection period.

The sensitivity for detection of anomalies in water was tested by performing spiking
experiments. One experiment was performed for each of the six contaminants. Each
experiment started with fresh tap water. Each contaminant was spiked numerous times
and the acquisition was repeated at many spiking concentrations in order to establish
an overall sensitivity for the system relative to varying contaminant loads. The tested
concentration ranges were 15–1555 µg/L for 6CNA, 4–108 µg/L for MBT, 55–333 µg/L
for CTN, 3–71 µg/L for TPN, 0.18–22 µg/L for PYR, and 1–26 µg/L for BAP. To ensure a
stable concentration of each contaminant event, water replenishment was stopped for the
duration of each spike. Mixing was, however, maintained via continuous operations of
the aquarium pumps throughout the experiment. Data were collected for approximately
10 min before subsequent spikes.

2.3.2. Data Pre-Processing and Creation of Synthetic Time Series

Baseline UV-spec data of uncontaminated drinking water were corrected for biofouling
effect, as described in Appendix A. It should be stressed that during field operation, this
artifact can be avoided by extra cleaning options installed on the lens [15].

Signals for each concentration of added contaminant were averaged over the time inter-
val being measured, with the exception of the first two minutes after spiking to make sure
that the chemicals were properly mixed. Since absorbance is additive, signal absorbance
(SAbso) was calculated for each concentration by subtracting average baseline absorbance
prior to spiking. Thus, SAbso is a measure of how much light is absorbed by the added
chemical. Under normal conditions without quenching fluorescence, it is proportional
to the number of fluorophores added and, therefore, proportional to the concentration.
Similarly, relative to SAbso, signal fluorescence (SFl) was calculated by subtracting baseline
fluorescence prior to spiking. Fluorescent values for lower concentrations of BAP and TPN
were obtained using linear extrapolation.

The synthetic time series (STS) of baseline with the anomaly of a desired type occurring
at a chosen period can be generated by adding SAbso and (SFl) to match the baseline due to
the additive nature of both absorbance and fluorescence. Because electronic noise is much
lower than the natural variability of baseline levels, the statistical uncertainties of SAbso and
(SFl) were neglected.

2.3.3. Feature Extraction

At each point in time, 200 measurements of absorbance (i.e., one per wavelength)
were generated during data generation. To remove multi-collinearity in the data and to
facilitate the analysis process, we applied principal component analysis (PCA) to reduce
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dimensionality. For building anomaly detection and identification systems, the leading five
PCA components (accounting for 99% of data variance) of UV-spec and the two fluorescence
channels were used. The system will depend on the 7 extracted variables in total for the
anomaly detection process. The scikit-learn implementation of PCA was used [16].

2.4. Anomaly Detection

The anomaly detection system is designed to detect measurements that vary signif-
icantly from the measured baseline and can indicate poor water quality or the presence
of contaminants. Our baseline model is a multivariate Gaussian distribution with seven
variables taht are the extracted features described in Section 2.3.3. By construction, principal
components (PCs) are uncorrelated. Baseline fluorescence is noise and, therefore, uncorre-
lated with PCs. Given no correlation between features, the covariance matrix simplifies
into the diagonal terms, and the likelihood of the data given the baseline model (L(µ,σ;x))
can be written as follows [17]:

L(µ, σ; x) = ∏n
i=1

√
1

2πσ2
i

exp

(
− (xi − µi)

2

2σ2
i

)
(1)

where µi and σi are the mean and the standard deviation for the ith dimension, respectively.
In this case, the maximum log-likelihood ratio simplifies into the following.

Λ(µ, σ; x) = ∑n
i=0

(xi − µi)
2

σ2
i

(2)

Λ(µ,σ;x) follows a χ2 distribution with n degrees of freedom and, therefore, can be
directly linked to the probability of the measurement at a given timestamp, and it is
compliant with the baseline.

2.5. Anomaly Identification

Anomaly identification is a classical multiclass categorization problem. There are
several ML techniques well-suited for addressing this problem. For the sake of simplicity,
we assumed that there might only be one chemical contaminant present in any given event;
therefore, there is no interaction between target categories. We used the scikit-learn [16]
implementation of multinomial logistic regression (LR) [18] to determine the category of
chemicals that the anomaly belongs. Target categories need to be known beforehand. In
our studies, we used the six chemicals listed in Section 2.1 to train and test the model.

3. Results
3.1. Baseline and Signals

Figure 1 shows the baseline variability, caused by water quality, for the two selected
absorbance and the two fluorescence wavelengths. Absorbance data were corrected for
biofouling effect as explained in Appendix A. To reduce statistical fluctuations, variability
was averaged over 10 min intervals. For absorbance, one standard deviation (σ) equals
0.0021 for the 224.6 nm and 0.0012 for 319.5 nm wavelengths, respectively. For fluorescence,
σ = 0.45 for 254/360 nm and σ = 0.40 for 375/460 nm wavelength, respectively.

The sensitivity to detection of changes in water quality was tested by the addition
of the six contaminants listed in Section 2.1. SAbso spectra are shown in Figure 2. Because
6CNA, MBT, and CTN are not fluorescent, their presence in water will manifest itself via
changes to the absorbance spectra. The signal of 254/360 fluorescence was detected for
TPN and PYR and of 375/460 fluorescence for BAP. Detectable concentrations of TPN,
PYR and BAP using fluorometers are much lower than the smallest detectable signal for
UV-spec. Their absorbance spectra can, however, be valuable in identifying the cause of
anomalies in an event with sufficiently high concentrations of substances.



Water 2022, 14, 2588 5 of 11

Water 2022, 14, x FOR PEER REVIEW 5 of 12 
 

 

0.0021 for the 224.6 nm and 0.0012 for 319.5 nm wavelengths, respectively. For fluores-

cence, σ = 0.45 for 254/360 nm and σ = 0.40 for 375/460 nm wavelength, respectively. 

 

Figure 1. Baseline variability over time for two selected absorbance (top) and the two fluorescence 

(bottom) wavelengths at specific wavelength. Light blue shows raw data while dark blue shows 

data average over 10 min intervals. 

The sensitivity to detection of changes in water quality was tested by the addition of 

the six contaminants listed in Section 2.1. SAbso spectra are shown in Figure 2. Because 

6CNA, MBT, and CTN are not fluorescent, their presence in water will manifest itself via 

changes to the absorbance spectra. The signal of 254/360 fluorescence was detected for 

TPN and PYR and of 375/460 fluorescence for BAP. Detectable concentrations of TPN, 

PYR and BAP using fluorometers are much lower than the smallest detectable signal for 

UV-spec. Their absorbance spectra can, however, be valuable in identifying the cause of 

anomalies in an event with sufficiently high concentrations of substances. 

Figure 1. Baseline variability over time for two selected absorbance (top) and the two fluorescence
(bottom) wavelengths at specific wavelength. Light blue shows raw data while dark blue shows data
average over 10 min intervals.

Water 2022, 14, x FOR PEER REVIEW 6 of 12 
 

 

 

Figure 2. SAbso for the six substances spiked to the drinking water as described in Section 2.1 and for 

the high (black line) and the lowest (blue line) detectable concentrations (µg/L). Values of concen-

trations displayed in the legend are provided in µg/L. The uncertainty of ±σ of ΔAbso is overlayed. 

3.2. Performance of Anomaly Detection 

The development of the anomaly detection system is purely based on the baseline 

data. Given that fluorescence data are normally distributed, we used the Monte Carlo 

technique to enhance statistics for fluorescence data such that all baseline data had an 

equal number of points. These data were averaged over 10 min interval. Resulting base-

line data statistics comprised 2631 points. Data were split into two equal size samples: a 

training set and a test set. The training set was used to fit PCA transformation parameters 

for absorbance baseline, which were then applied to the test set. The first five PCs explain 

99.4% of variance in the data. The training set was subsequently used to extract the µ and 

σ parameters of the multivariate gaussian distribution. 

The test set was used to evaluate performance. Figure 3 shows the leading two PCs 

for the test set with two-dimensional confidence ellipsoids overlayed. Parameters for el-

lipsoids were estimated in the training set. Log-likelihood ratio was used to project the 

seven-dimensional ellipsoid into the one-dimensional anomaly estimator, as explained in 

Section 2.4. Our anomaly estimator can be equated to the critical values of χ2 distribution 

for seven degrees of freedom. The concentrations applied and shown in Figure 4 were 

6CNA 44 µg/L, MBT 18 µg/L, CTN 56 µg/L, TPN 1.5 µg/L, PYR 0.3/L, and BAP 0.15 µg/L. 

It should be stressed that the achieved limits in anomaly detection are indicative. For real 

time monitoring, it is possible to rely on several consecutive anomalous events instead of 

a single event firing an alarm. Exact limits will, therefore, depend on applications, the rate 

of acceptable false positive alarms, and false negative misses as well as the integration 

level with anomaly identification described in the next section. 

Figure 2. SAbso for the six substances spiked to the drinking water as described in Section 2.1 and for the
high (black line) and the lowest (blue line) detectable concentrations (µg/L). Values of concentrations
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3.2. Performance of Anomaly Detection

The development of the anomaly detection system is purely based on the baseline data.
Given that fluorescence data are normally distributed, we used the Monte Carlo technique
to enhance statistics for fluorescence data such that all baseline data had an equal number
of points. These data were averaged over 10 min interval. Resulting baseline data statistics
comprised 2631 points. Data were split into two equal size samples: a training set and a test
set. The training set was used to fit PCA transformation parameters for absorbance baseline,
which were then applied to the test set. The first five PCs explain 99.4% of variance in
the data. The training set was subsequently used to extract the µ and σ parameters of the
multivariate gaussian distribution.

The test set was used to evaluate performance. Figure 3 shows the leading two PCs
for the test set with two-dimensional confidence ellipsoids overlayed. Parameters for
ellipsoids were estimated in the training set. Log-likelihood ratio was used to project the
seven-dimensional ellipsoid into the one-dimensional anomaly estimator, as explained in
Section 2.4. Our anomaly estimator can be equated to the critical values of χ2 distribution
for seven degrees of freedom. The concentrations applied and shown in Figure 4 were
6CNA 44 µg/L, MBT 18 µg/L, CTN 56 µg/L, TPN 1.5 µg/L, PYR 0.3/L, and BAP 0.15 µg/L.
It should be stressed that the achieved limits in anomaly detection are indicative. For real
time monitoring, it is possible to rely on several consecutive anomalous events instead of a
single event firing an alarm. Exact limits will, therefore, depend on applications, the rate of
acceptable false positive alarms, and false negative misses as well as the integration level
with anomaly identification described in the next section.
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3.3. Performance of Anomaly Identification

To build the anomaly identification system, we used the same baseline data as the
anomaly detection procedure, which are described in Section 3.2. Baseline data were split
into a test set and a training set. Both the training set and the test data were split into
seven categories of equal size: one for baseline and one for each of the six chemicals of
interest. The overlayed signals had the same concentrations as those in Section 3.2. PCA
transformation parameters were extracted by fitting the train set. The leading three PCs are
shown in Figure 5.
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6CNA, CTN, and MBT, which are not fluorescent.

We trained a multinomial LR to recognize the six chemicals. The confusion matrix for LR
prediction based on the test set is shown in Figure 6. It should be noted that the LR performs
better than the anomaly detection technique for the three chemicals that are characterized by
more than one feature (five PCs) (that is, those that are not fluorescent). This is consistent with
expectations that ML tools provide improvements in the description of complex data. BAP is
distinguished from PYR and TPN based on the difference in the fluorescence wavelength. The
detection of PYR and TPN relies upon the same property; therefore, mixing between them is
expected. There was a small difference in concentrations between the two chemicals, leading
to a small difference in fluorescence values. Therefore, a certain distinction between them was
picked up by the model. This is, however, an artifact.

The anomaly identification tool can be coupled with anomaly detection to improve
the ability to detect pollutants. It should be stressed that this improvement will occur only
for contaminants known to the model.
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4. Discussion

The goal is that sensors are applied as part of an online and real-time monitoring
and control system. Such a system would be designed to proceed beyond conventional
pollutants and water-quality measurements. This is performed to better cater to potential
risks from any one of the hundreds of thousands of chemicals in use today that could
pose a challenge to water quality. Previous studies in this field only focused primarily
on traditional water-quality parameters, and there is extensive literature on AI systems
for this purpose [19]. The present study takes a broader view and is aimed at the vast
chemical space and new emerging contaminants that may pose a risk to human health and
the environment.

The optical sensors used in this study provide adequate sensitivity for the detection of
a broader range of organic substances. The detection of anomalies arising from sub-1 µg/L
concentrations of PAHs was shown, which is appropriate for the USEPA’s maximum
contaminant level (MCL) in drinking water of 0.2 µg/L for BAP [20]. Anomaly events
were detectable for the other test substances at sub-50 µg/L concentrations. 6CNA is a
degradation product of neonicotinoid insecticides imidacloprid and acetamiprid for which
toxic effects were observed at 1 µM, equivalent to approximately 250 µg/L and belo [21,22].
MBT has a total allowable concentration (TAC) in the drinking water of 40 µg/L [7].

Additional sensitivity gains may potentially be made by extending the timeframe and
the amount of baseline data used to define the “normality” baseline. Baseline variability
will, however, depend on the application area and where the sensors are deployed. It
may also show seasonal trends or be correlated with external measures such as weather
or turbidity. The inclusion of such baseline knowledge will provide for high sensitivities
in anomaly detection. In this study, variability was averaged over 10 min intervals to
reduce statistical fluctuations. This interval must be calibrated to fit the baseline variability
scale specific to a given application area. This is true both in terms of amplitude and
over time. While the calibration requirements of this system vary depending on its final
application area, the overarching techniques remain the same. As a result, the technique
could potentially be used in a variety of applications, including river monitoring, food and
industrial process water, and a variety of other areas where water is used and reused.

While the development of Anomaly Detection requires only data on baseline variability
over time, anomaly identification requires prior knowledge of the contaminants in order
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to train the model. The accuracy and breadth of applicability (scope) of the identification
module would improve as the number of “known” pollutants or contaminants grows. For
a proof of concept, we used only six substances from five chemical classes. This was useful
for establishing effectiveness and sensitivity in this study, but these substances are only
indicative of the potential for systems of this design.

The real-world application of this approach would involve iteration or continual
improvement (re-training of the model) as new data become available. Anomaly detection
could, for example, trigger an automated sample-collection process. This sample can be sent
for thorough analysis via high-resolution mass spectrometry to identify the substance(s)
causing the anomaly [23]. Knowledge of the identified substance would then be used to
update and re-train the anomaly identification model, and, thereby, expanding its “library”
of known contaminants.

One acknowledged weakness of this study is that, for the sake of simplicity, we
assumed only one chemical contaminant event at any given time. This implies that there
are no interactions between target categories. While such an assumption may be correct in
a wide range of situations, it is not always the case. The identification of several chemicals
at a time is a multilabel classification problem in ML. Boosted decision tree (BDT) or Neural
Network (NN) classifiers can be used in the anomaly identification system to perform this
task. An increasingly challenging case arises when two separate and independent changes
in the chemical composition of water counteract or negate the sensor signal from each other.
This is less relevant for UV-spec because the absorbance signals show additive relations in
the presence of multiple contaminants, but the quenching of fluorescence is a good example
of a scenario that could be challenging. More research is needed to determine the impact
of multiple sources on the effectiveness of anomaly detection and identification in such
a scenario.

5. Conclusions

Changes in water quality can endanger human health and the environment. Changes
can also have an impact on the quality of products and services that use water. Online and
real-time monitoring and guidance can be critical to success.

Multi-sensor systems can be used to detect anomalies associated with chemical con-
tamination in water in real-time. Optical sensors were used in this study as they provide
sensitivity for a broad range of organic chemicals. This study used such sensor data to
develop an AI for drinking water applications, but other sensors could be used to broaden
the application’s area. While the exact combination of sensors may vary by application,
the overarching technique remains the same. Sensor-based AI systems can be used in a
variety of areas, including surface-water, urban runoff, food and industrial process water,
aquaculture, and numerous areas where water is used and reused.
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Appendix A

Uncontaminated UV-spec data after a couple of days of data collection showed a rapid
increase in absorbance as a function of time. This was explained by biofouling accumulating
on the lens. To correct for this effect, a second-order polynomial was fitted to the data, and
the estimated trend was subtracted from the data. This is shown in Figure A1 for a selected
wavelength. This procedure was applied per wavelength.
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