
1. Introduction
Biotic CO2 emissions from rivers can be estimated through the metabolic balance of rivers, thus contributing to 
our understanding of the global carbon cycle (Battin et al., 2023; Hotchkiss et al., 2015; Raymond et al., 2013). 
Whole-stream metabolism characterizes carbon fixation and mineralization through gross primary production 
(GPP) and ecosystem respiration (ER) in streams and rivers. GPP and ER are integral measures of riverine 
biological processes (Bernhardt et al., 2018) and can serve as important indicators of whole-river health (Ferreira 
et al., 2020; Von Schiller et al., 2017; Young et al., 2008).

Ecologists have developed robust models for whole-stream metabolism estimation based on diel oxygen changes 
in open channels (Demars et al., 2015; Holtgrieve et al., 2016; Odum, 1956) including book-keeping methods 
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with Monte Carlo simulation (Demars,  2019) and inverse models with Bayesian procedure (Appling, Hall, 
Yackulic, & Arroita, 2018; Hall et al., 2016; Holtgrieve et al., 2010). However, these models were developed 
for reach-scale estimation and for a limited range of river environments (Appling et al., 2018). For example, 
the open-channel metabolism models do not account for the influence of sub-daily flow variation and transient 
storage zones on dissolved oxygen (DO) variation at river-network scale despite these features being prevalent 
in many rivers due to flow regulation (Zimmerman et al., 2010) and channel hydromorphological characteristics 
(Kurz et al., 2017), respectively. Civil engineers have also produced water quality models for oxygen prediction 
to address river sanitation issues (Beck & Young, 1975; Streeter & Phelps, 1925). These models are applicable 
to entire river networks (Cox, 2003a, 2003b), whereas this is just emerging in the ecological literature (Pathak 
et al., 2022; Segatto et al., 2020, 2021). Therefore, we can integrate implementations from both these fields to 
build parsimonious models applicable at the river-network scale and to a wider range of river environments than 
those currently studied through open-channel metabolism models.

Quantification of transient storage in metabolism models may be crucial as these zones are potential hotspots 
of metabolism in rivers due to longer residence times (Argerich et al., 2011; Fellows et al., 2001; Mulholland 
et al., 2001). Transient storage zones are characterized by stagnant pockets of water due to presence of biofilms, 
dense patches of aquatic plants, hyporheos, or eddies of deep pools (Bencala & Walters, 1983; Bottacin-Busolin 
et al., 2009; Ensign & Doyle, 2005). Several models have been developed to simulate the impact of transient storage 
on solute transport in rivers such as the Transient Storage Model (Bencala & Walters, 1983; Manson et al., 2001; 
Runkel, 1998) and the Aggregated Dead Zone (ADZ) model (Beer & Young, 1983; Wallis et al., 1989). The 
proportion of transient storage and the exchange rate of water molecules between the main channel and the stor-
age zone may change with flow (Manson et al., 2010; Wallis & Manson, 2018), but current models were designed 
to work under steady flows.

The assumption of steady flow conditions in metabolism models may not be valid in regulated rivers. Wide-spread 
flow regulation for reservoir operations in rivers around the world has altered the frequency and magnitude of 
sub-daily flow variation and consequently impacted healthy ecosystem functioning (Poff & Zimmerman, 2010). 
The timings and magnitude of flow releases determine trends in metabolism. Reduction in flow variability can 
elevate downstream metabolism (Aristi et  al.,  2014), whereas abrupt high-flow releases can reduce tailwater 
metabolism (Uehlinger et al., 2003). The studies analyzing flow regulation impacts on ecosystem metabolism 
have mainly looked at coarser temporal scale using Odum (1956)'s two-station method at a river-reach scale, 
where homogeneous hydraulic conditions are assumed over a period of day, that is, impact of average daily flow 
on average daily metabolism (e.g., Aristi et al., 2014; Chowanski et al., 2020; Uehlinger et al., 2003). However, 
metabolism models need to account for sub-daily flow variability, especially considering recent trends in the 
rapidly changing energy markets (e.g., switch to renewable energy) that may enhance the sub-daily variability 
in flow (hydropeaking) in tailwaters (Ashraf et al., 2018). To address these limitations, a river network model 
for stream metabolism requires the run of a flow routing model ahead of implementing the two-station method 
(Cimorelli et al., 2016; Payn et al., 2017; Whitehead et al., 1997). The prospect of simply adding water transient 
storage using advection-dispersion equations (Chapra & Runkel, 1999; Demars et al., 2015) to these more compli-
cated models is daunting because many additional parameters would need to be estimated or well constrained to 
apply the models at river-network scale under varying flow conditions, as exemplified with nutrient cycling (Ye 
et al., 2012).

This study overcomes these limitations through development of a parsimonious model for Metabolism estima-
tion in rivers with Unsteady Flow conditions and Transient storage zones (MUFT) that can be extended to a 
river-network scale. To demonstrate the model's development and implementation, we used a case study of the 
River Otra in southern Norway. The MUFT model was implemented along an 11 km river stretch downstream of 
a hydropower plant, where dam operations cause significant diel fluctuations in flow. To include the influence 
of diel flow variation in the MUFT model, we coupled a simple unsteady flow routing model adapted from the 
QUASAR (QUAlity Simulation Along River systems) model (Whitehead et al., 1997) with a two-station stream 
metabolism model (Odum, 1956). The study stretch also demonstrates delayed oxygen transport compared to 
water velocity, which could be attributed either to the transient storage created from excessive plant growth in the 
river reach or to the dual flow regulation by dams at the upstream and downstream ends of the study stretch. To 
account for these probable mechanisms of oxygen transport, we tested two model formulations, (a) ADZ model 
that accounts for transient storage zones (Wallis et al., 1989) and (b) ADV (advection) model that accounts for 
dual flow regulation impact on oxygen transport (Beck & Young, 1975). In the MUFT model, these formulations 
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(ADV or ADZ) are coupled with the unsteady flow routing and the two-station stream metabolism models. 
Previously, studies have proposed modifications in the QUASAR flow routing model to simulate unsteady flows 
(Sincock & Lees, 2002) as well as proposed coupling of ADZ and original QUASAR (steady flow) models to 
simulate non-conservative solutes (Lees et al., 1998). The MUFT model combines these efforts by coupling the 
unsteady QUASAR model and the ADZ model to simulate non-conservative solutes.

In this study, we show metabolism estimation using both inverse and accounting (book-keeping) approaches in 
the MUFT model. While the accounting method is not predictive, it allows an independent estimation of the 
light parameters for GPP that are used to better constrain the inverse model and avoid issues of equifinality. The 
modeling approaches presented in this study not only provide theoretical benefits for studying the impact of tran-
sient storage zones and unsteady flows on metabolism dynamics, but also promote practical applications for the 
management of tailwater river ecosystems.

2. Theory
We first selected a flow routing model to simulate discharge downstream of a hydropower plant, with upstream 
flow boundary conditions (from e.g., gauging station, rainfall-runoff simulations) as model input. We present 
the flow model equations in this section, but any flow routing model of user's preference can be used. Further, 
we present associated metabolic models of DO concentrations under unsteady flow conditions with increasing 
complexity. In the next section, we show how to apply these models to a case study.

2.1. Flow Routing Model

To simulate unsteady flows in the MUFT approach, we adapted the flow routing model proposed by Sincock and 
Lees (2002), who based their approach on the QUASAR model (Whitehead et al., 1997) originally designed for 
slowly time-varying flows (quasi-steady-state). Because of the steady flow assumption, the original QUASAR 
model assumes the flow and solute travel times to be equal. However, under unsteady flow conditions, the travel 
time of flood wave can be expressed in terms of kinematic wave velocity (celerity), which is higher than the 
mean flow velocity (Sincock et al., 2003) and consequently, solute velocity. The ratio m of the average celerity (c, 
m s −1) to the average flow velocity (u, m s −1) is expressed following Sincock et al. (2003),

𝑚𝑚 =
𝑐𝑐

𝑢𝑢
=

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

𝑑𝑑∕𝑑𝑑
 (1)

where Q is discharge (m 3 s −1), A is the cross-section area of flow and m may be approximated as 5/3 from the 
Manning friction law (Chapra, 2008).

The celerity (c, m s −1) of the flood wave for a reach of length L (m) is,

𝑐𝑐 =
𝐿𝐿

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (2)

where Tflow represents the travel time of the flood wave (s).

It is assumed that Tflow may be partitioned into dispersion (Tfladz) and advection (τfl) terms using a fraction of 
retention Fr,

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹𝑟𝑟 × 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (3)

𝜏𝜏𝑓𝑓𝑓𝑓 = (1 − 𝐹𝐹𝑟𝑟) × 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

The flow routing model includes a simple mass-balance of incoming and outgoing flows and assumes fixed 
channel width with rectangular cross-section. Lateral groundwater inflows and discharge from small tributaries 
were assumed to be negligible within reaches. In a river network, the flow of major tributaries may be inserted 
at the upstream edge of a reach. River reaches may be represented as a series of nonlinear reservoirs. The flow 
model simulates water transport through a series of n nonlinear reservoirs followed by a time lag parameter (τfl, s) 
that lags the routed hydrograph without attenuation (Figure 1a). The changes in flow are represented as follows,

𝑑𝑑𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
=

𝑑𝑑𝑖𝑖𝑖𝑡𝑡−𝜏𝜏𝑓𝑓𝑓𝑓 −𝑑𝑑𝑡𝑡

𝐹𝐹𝑟𝑟𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 (5)
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where Qt is the flow leaving the reach at time-step t, Qi,t is the flow coming into the reach at time-step t (i repre-
sents input). Equation 5 accounts for the travel time (Tflow) derived from celerity (Equation 2) as opposed to the 
travel time derived from mean flow velocity as is commonly done in original QUASAR model applications.

2.2. Metabolic Model in a Well-Mixed Reach Under Unsteady Flow Conditions

We developed the metabolic model of DO dynamics (Equation 6) by combining two approaches, (a) the conserva-
tive solute transport model proposed by Whitehead et al. (1997) to simulate DO transport with unsteady flows and 
(b) the two-station stream metabolism method proposed by Odum (1956) to simulate in-stream DO sources  and 
sinks from metabolism and air-water gas exchange processes. The detailed proofs of both models were given in 
the original publications. Note that Equation 6 does not account for water transient storage.

𝑑𝑑𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
=

𝑄𝑄𝑖𝑖𝑖𝑡𝑡

(𝑄𝑄𝑡𝑡 × 𝑇𝑇𝑢𝑢)
(𝑑𝑑𝑖𝑖𝑖𝑡𝑡 − 𝑑𝑑𝑡𝑡) +

1

𝑧𝑧𝑡𝑡
(𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑖𝑡𝑡 −𝑅𝑅𝐸𝐸𝑅𝑅𝑖𝑡𝑡) + 𝑘𝑘(𝑑𝑑𝑠𝑠𝑖𝑡𝑡 − 𝑑𝑑𝑡𝑡) (6)

where Ci,t is the incoming DO in the reach at time-step t (mg O2 L −1 equivalent to g O2 m −3), Ct is the DO leaving 
the reach at time-step t (mg O2 L −1), zt is the average stream water depth (m), PGPP is the GPP (g O2 m −2 min −1), 
RER is the ER (g O2 m −2 min −1), k is the gas exchange coefficient (min −1) and Cs is the expected oxygen solu-
bility (mg O2 L −1). Tu (min) represents the mean flow travel time, which is equal to the solute travel time for a 
well-mixed reach.

2.3. Metabolic Model With Pure Advection and a Well-Mixed Reach Under Unsteady Flows (ADV 
Model)

In long reaches where solute transport is dominated by advective transport as opposed to dispersion, it may 
be necessary to explicitly take into account pure advection as shown in Equation  7 (Beck & Young,  1975; 

Figure 1. Conceptualization of river reaches in the (a) unsteady flow model adapted from Sincock and Lees (2002) and (b) 
ADV and ADZ models adapted from Lees et al. (2000) for conservative solute C. Qi, Input flow, Q, output flow, τfl, advection 
fraction of flood wave travel time, Tfladz, dispersion fraction of flood wave travel time, nc, number of continuous stirred-tank 
reactors, Ci, input dissolved oxygen concentration, C, output dissolved oxygen concentration, α and τs, advection delay in 
ADV and ADZ models, Tsadv, total solute travel time in the ADV model, Tadz, dead zone residence time in the ADZ model, 
Tsadz, total solute travel time in the ADZ model.
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Odum, 1956). The ADV formulation accounts for the effect of dual water regulation by dams at upstream and 
downstream ends of the study reach. The dual water regulation results in apparent faster water velocity compared 
to the solute velocity due to the early release of water by the downstream dam before the water from the upstream 
dam reaches the downstream dam.

𝑑𝑑𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
=

𝑄𝑄𝑖𝑖𝑖𝑡𝑡−𝛼𝛼

(𝑄𝑄𝑡𝑡 × 𝑇𝑇𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠)
(𝑑𝑑𝑖𝑖𝑖𝑡𝑡−𝛼𝛼 − 𝑑𝑑𝑡𝑡) +

1

𝑧𝑧𝑡𝑡
(𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑖𝑡𝑡 −𝑅𝑅𝐸𝐸𝑅𝑅𝑖𝑡𝑡) + 𝑘𝑘(𝑑𝑑𝑠𝑠𝑖𝑡𝑡 − 𝑑𝑑𝑡𝑡) (7)

𝛼𝛼 = 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑇𝑇𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 (8)

where Fadv is the advection delay coefficient. The addition of pure advection α in the first term of the equation 
allows to have the two DO concentration curves in phase without modifying their shape (simple time translation), 
with α ≤ Tsadv (Beck & Young, 1975). Note that Tsadv is equivalent to Tu for the ADV model.

2.4. Metabolic Model With Pure Advection and Transient Storage (Dispersion) Under Unsteady Flows 
(ADZ Model)

The influence of transient storage in the metabolic model is included using the ADZ concept (Beer & Young, 1983; 
Wallis et al., 1989) as proposed by Sincock and Lees (2002), who coupled the unsteady QUASAR flow model 
with the ADZ model for a conservative solute. ADZ model was selected for its simplicity and its conceptual 
similarity to the unsteady QUASAR flow model (Figure 1). The original QUASAR model assumes the river 
reach to be a perfectly mixed system. ADZ model conceptualizes the river reach as an imperfectly mixed system, 
where the solute is subjected to pure advection followed by dispersion in a lumped active mixing zone (Beer & 
Young, 1983; Lees et al., 2000; Wallis et al., 1989). The metabolic model becomes:

𝑑𝑑𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
=

𝑄𝑄𝑖𝑖𝑖𝑡𝑡−𝜏𝜏𝑠𝑠

(𝑄𝑄𝑡𝑡 × 𝑇𝑇𝑎𝑎𝑑𝑑𝑎𝑎)

(

𝑑𝑑𝑖𝑖𝑖𝑡𝑡−𝜏𝜏𝑠𝑠 − 𝑑𝑑𝑡𝑡

)

+
1

𝑎𝑎𝑡𝑡
(𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝑖𝑡𝑡 −𝑅𝑅𝐸𝐸𝑅𝑅𝑖𝑡𝑡) + 𝑘𝑘(𝑑𝑑𝑠𝑠𝑖𝑡𝑡 − 𝑑𝑑𝑡𝑡) (9)

The ADZ model partitions the overall solute travel time Tsadz into dead-zone residence time Tadz and advection 
lag τs, equivalent to partitioning total reach volume into the volume of water transient storage and main channel.

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜏𝜏𝑠𝑠 (10)

For reaches affected by transient storage, the effective solute transport velocity (us) is lower than the mean flow 
velocity (u) due to solute retention in the storage zone. The relationship between these velocities can be described 
using a solute-lag coefficient β (Lees & Camacho, 2000) as follows,

𝑢𝑢𝑠𝑠 =
𝑢𝑢

1 + 𝛽𝛽
 (11)

Considering Equations 1, 2, and 11, travel time and advection lag for a solute in the ADZ model can be described 
in terms of flow parameters (Sincock, 2002),

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚(1 + 𝛽𝛽)𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (12)

𝜏𝜏𝑠𝑠 = 𝑚𝑚(1 + 𝛽𝛽)𝜏𝜏𝑓𝑓𝑓𝑓 (13)

2.5. Modified Two-Station Model for the Accounting Method

Equation 9 can be simplified to derive net ecosystem production (PNEP = PGPP − RER) using Euler finite-difference 
approach, which gives the two-station accounting approach under varying discharge,

𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃 𝑁𝑁𝑁 =

(

𝐶𝐶𝑁𝑁+Δ𝑁𝑁 − 𝐶𝐶𝑁𝑁

Δ𝑁𝑁
−

𝑄𝑄𝑖𝑖𝑁𝑁𝑁−𝜏𝜏𝑠𝑠

(𝑄𝑄𝑁𝑁 × 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)

(

𝐶𝐶𝑖𝑖𝑁𝑁𝑁−𝜏𝜏𝑠𝑠 − 𝐶𝐶𝑁𝑁

)

− 𝑘𝑘(𝐶𝐶𝑠𝑠𝑁𝑁𝑁 − 𝐶𝐶𝑁𝑁)

)

𝑎𝑎𝑁𝑁 (14)

Note that Equation 14 can easily be adjusted for the other metabolic models presented above (Equations 6 and 7). 
This approach allows to estimate average RER during the dark hours (photosynthetically active radiation [PAR] < 1 
μmol-photons m −2 s −1) and deduce PGPP,t by difference (PNEP,t − RER,t) during the light hours assuming constant 
RER throughout the day (see Demars et al., 2015). Daily GPP (PGPP) is simply the sum of PGPP,t throughout a day,
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𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 =

∫
𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡
0

𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐺𝑡𝑡 𝑒𝑒𝑡𝑡

1 𝑒𝑒𝑑𝑑𝑑𝑑
 (15)

2.6. Photosynthesis-Light Relationship

The accounting method has the advantage, over the inverse modeling approach, of deriving instantaneous and 
daily GPP without making any assumption on the photosynthesis-light relationship. The most appropriate link 
function may thus be selected by plotting PGPP,t as a function of PARt. The function is substituted to PGPP,t in the 
metabolic models (Equations 6, 7, or 9). The parameters of the link function may be used as constants or enabled 
to constrain the priors (through their uncertainties) in the inverse model, thus reducing issues of equifinality. 
Here, instantaneous GPP (PGPP) was modeled as a function of PAR with a Michaelis-Menten type equation to 
include the light-saturation effect on photosynthesis (Demars et al., 2011),

𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃 𝐺𝐺𝐺 =
𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 × 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺

𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺

 (16)

where EPAR,t is the PAR (μmol-photons m −2 s −1) at time-step t, PGPPmax is the maximum GPP (g O2 m −2 min −1) 
and kPAR is the PAR at which half the PGPPmax is attained (μmol-photons m −2 s −1).

PGPPmax and kPAR in the inverse model were estimated using a least squares minimization algorithm. It is implicitly 
assumed that light conditions are spatially uniform along the modeled channel length and PAR only varies with 
time.

2.7. Dissolved Oxygen Saturated Concentration

The expected oxygen solubility (Cs, mg L −1) was estimated from Standing Committee of Analysts  (1989) as 
follows,

𝐶𝐶𝑠𝑠 =
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃 − 𝑉𝑉𝑃𝑃 )

101.325 − 𝑉𝑉𝑃𝑃

 (17)

where Catm is the oxygen solubility under normal atmospheric pressure (mg L −1), P is the observed atmospheric 
pressure (kPa) and VP is the saturation vapor pressure of water (kPa). Catm and VP were estimated as a function of 
water temperature T (range of application 0°C–50°C, Demars et al., 2015),

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = −0.00005858𝑇𝑇 3 + 0.007195𝑇𝑇 2 − 0.39509𝑇𝑇 + 14.586 (18)

𝑉𝑉𝑃𝑃 = 0.0000802𝑇𝑇 3 − 0.000717𝑇𝑇 2 + 0.0717𝑇𝑇 + 0.539 (19)

3. Case Study
3.1. Study Area

The River Otra flows through forests and alpine uplands in the valley of Setesdal and is the largest river in south-
ern Norway. The river drains a catchment area of 4,000 km 2 and runs for about 240 km until it meets the North 
Sea at Kristiansand (Wright et al., 2017). The river is extensively used for hydropower production (about 4 TWh 
per year) through the construction of dams and water transfers, with Brokke being the largest hydropower station 
in the valley (Rørslett, 1988; Wright et al., 2017).

We applied the models within a 10,780 m long river section located downstream of the Brokke hydropower 
plant (Figure 2). This section drains about 1,900 km 2 (Wright et al., 2017). The river stretch can be considered 
an artificial system with its flow and water level controlled by Brokke hydropower plant at the upstream end and 
Hekni dam at the downstream end. The oscillating demands on energy production can cause flow to vary from 
∼20 to 80 m 3 s −1 within 24 hr under low summer flows (Figure 4a). The hydropower plant effluent can also 
release water highly supersaturated in dissolved gases depending on water intakes (streams vs. reservoirs) inde-
pendently of discharge (Pulg et al., 2016). No such supersaturation events were observed during the short-term 
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study period here (Demars et al., 2021). In addition to the controlled flow, the 
river reach also shows profuse growth of the aquatic plant Juncus bulbosus, 
which may create a significant amount of water transient storage, delaying 
solute transport time relative to the velocity of water (Ensign & Doyle, 2005; 
Kurz et al., 2017).

3.2. Sensor Deployment and Bathymetry

DO and water temperature were monitored using O2 and temperature sensors 
(miniDOT PME) at site 2 (Figure 2). A monitoring station was also installed 
at site 3 to monitor DO and water temperature (Xylem - Andeeraa optode 
4831), PAR (LICOR Quantum LI190R-L), air temperature and atmospheric 
pressure (Barometer RM Young 061302V) using a Campbell data logger 
(CR1000X). Data from the monitoring station were transferred daily through 
a Campbell Scientific 4G modem CELL215. Data were logged at 5 min time 
intervals from 4th (10:00 a.m.) to 8th (15:35) August 2019. The sensor at site 
2 was installed vertically facing down in the main current at middepth, tied to 
a post. The sensor at site 3 was inserted into a plastic pipe fixed on Straume 
Bridge, and protruded in the main current. The oxygen sensors were cross 
calibrated in 100% air saturated water in a bucket before and after deploy-
ment and small corrections (<3% DO saturation) were applied, as previously 
reported (Demars, 2019).

Total dissolved gas (TDG) was monitored at sites 1–4 every 30 min at infre-
quent intervals during a 5 yr period (2012–2017) with Total Gas Analyzers 3.0 
(Fisch-und Wassertechnik (Pulg et al., 2016) based on the Weiss-saturometer 
principle (Weiss, 1970). The saturation is measured as the percent dissolved 

air in the water relative to expectation from ambient air pressure. The saturometer has an accuracy of ±10 hPa, 
which is approximately ±1% TDG.

Several thousands of georeferenced water depth points were taken throughout the reach with a measuring stick 
north of Straume and sonar (Lowrance) in the downstream part to Hekni (Figure S1 in Supporting Informa-
tion S1), and cross-calibrated with discharge. Changes in water depth were determined from absolute pressure 
difference (see Moe & Demars, 2017) between atmospheric pressure and submersible pressure sensors inserted 
into a perforated plastic tube at sites 1–4 recording at 30 min time intervals (Onset HOBO data loggers U20L-04, 
accuracy equivalent to 4 mm for water level).

3.3. Flow-Velocity

Hourly flow data at Brokke (hydropower plant effluent and river) and Hekni sites were obtained for a duration of 
8 days (3 August 2019 to 10 August 2019) from the hydropower company. Flow observations were not available 
at Rysstad Øy and Straume, where metabolism is estimated. Flood wave travel times at these sites were derived 
from solute travel time using the travel time relationships proposed by Sincock et al. (2003). We used these travel 
time relationships to back-calculate solute and flow travel time parameters from velocity estimates (Table 1). 
Velocity estimates in the river reaches were derived using two approaches.

Average velocities for the first section (sites 1–2: steep, shallow, fast flowing, cobble bed) were determined using 
Manning's equation: 𝐴𝐴 𝐴𝐴𝑠𝑠 = (1∕𝑛𝑛𝑚𝑚)𝐴𝐴∕𝑃𝑃𝑚𝑚

2∕3
𝑆𝑆

1∕2
𝑐𝑐  , where nm is the Manning roughness coefficient (0.04, cobble bed), 

A is the cross-sectional area of the river channel (m 2), Pm is the wetted perimeter of the river channel (m) and Sc is 
the channel slope (0.0016 m/m). A and Pm were calculated using changes in water depth. This method could not 
be applied further downstream due to partial control on water level by Hekni dam.

Average velocities for the second section (sites 2–3: very wide, gentle slope, sandy bed) and the third section (sites 
3–4: narrow, water level controlled by Hekni dam) were estimated from section length (L) and mean travel time 
(Ts) of large peaks in TDG, where us = L/Ts. We used cross-correlation function in R (Venables & Ripley, 2002) 
to identify average travel time lags (h) between TDG time-series across the sites. Large TDG super-saturation 

Figure 2. Study stretch in the River Otra spanning from Brokke to Hekni. 
Monitoring locations of river flow (red circles) and dissolved oxygen (black 
circles) are marked on the map.
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events (threshold >130% at Brokke) with time lag correlation coefficient >0.4 were selected for the estimation 
of velocity. These velocities were plotted against discharge at Hekni (averaged for corresponding event duration) 
to establish flow-velocity relationship for each reach. TDG travel times ranged between 2–12 and 7–13 hr in the 
second (sites 2–3) and third sections (sites 3–4), respectively. This method could not be applied in the first section 
as the temporal resolution of the TDG data was too coarse relative to the mean travel time (<1 hr).

We established relationships between flow and TDG velocity as us = b′Q c′ for three discernible sections. Ideally, 
a conservative solute should be used to estimate flow-velocity parameters (b′, c′). While TDG is not a conserv-
ative tracer, the selection of the largest peaks to differentiate from noise and the very low gas exchange rate in 
these sections gave a similar result to a continuous addition of lime under high flow conditions (about 102 m 3 s −1) 
monitored with electric conductivity sensors deployed at Straume (site 3) and Hekni (site 4). Power regressions 
between the velocities of TDG waves and corresponding mean flows at Hekni provided values of constants b′ 
and c′ for the second (R 2 = 0.78) and third sections (R 2 = 0.56) (Figure S2 and Table S1 in Supporting Infor-
mation S1). Water traveled fastest in the first section (Brokke-Rysstad Øy) with a mean velocity of 0.73 m s −1, 
slowest (0.14 m s −1) in the widest section with high plant growth (Rysstad Øy-Straume) and slow-flowing in the 
narrower and deeper third section (0.27 m s −1) for a 50 m 3 s −1 discharge.

3.4. Gas Exchange Rate

The gas transfer velocity (kz) of CO2 was estimated as the flux of CO2 (FCO2, mmol m −2 h −1) determined using 
floating chambers equipped with infra-red gas analyzers (following Bastviken et al., 2015) relative to the CO2 
saturation deficit as follows (Cs − C, mmol m −3),

𝑘𝑘𝑘𝑘 =
𝐹𝐹𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝑠𝑠 − 𝐶𝐶
 (20)

More specifically, CO2 efflux (or influx) were estimated in 33 half-hour runs, from the average of three cham-
bers for each run drifting freely at the water surface and logging at 30 s time intervals. The runs were conducted 
between March 2020 and August 2020 under varying temperature, discharge, and depth. The calculations of CO2 
flux for individual chambers followed Martinsen et al. (2018). Water samples were collected at the beginning and 
end of each run in 120 mL glass bottles to determine the CO2 saturation deficit. Water bottles were filled to the 
rim and capped underwater, then crimped. Mercuric chloride (HgCl2) was immediately added to stop biological 
processes (100 μL of half saturated solution per 120 mL bottle). The samples were kept cool (+4°C) and in the 
dark until the day of gas analysis. The samples were warmed and weighed at room temperature, a 30 mL helium 
headspace was created, the samples were weighed again (to determine the volume of water removed from the 
bottle), and shaken gently horizontally for at least an hour. The headspace was analyzed by gas chromatography 

Table 1 
Velocity and Travel Time Formulations in the ADV and ADZ Models for the River Otra Back-Calculated Based on the 
Travel Time Relationships Proposed by Sincock et al. (2003)  a

ADV model ADZ model

Solute velocity us = b′ × Q c′ us = b′ × Q c′

Solute-lag coefficient β = 0 β = 1.55 (see Text S2 in Supporting Information S1)

Mean flow velocity uadv = us uadz = (1 + β) × us

Celerity cadv = m × uadv cadz = m × uadz

Water residence time in CSTR Tuadv = L/uadv Tuadz = L/uadz

Total solute travel time Tsadv = Tuadv Tsadz = L/us

Advection delay α = Fadv × Tsadv τs = Tsadz − Tuadz

Dead zone residence time Tadz = Tuadz

 aCSTR, continuous stirred-tank reactor; b′ and c′, flow-velocity constants; Q, discharge; β, solute-lag coefficient; uadv and 
uadz, mean flow velocity (ADV, ADZ); us, solute velocity; cadv and cadz, celerity (ADV, ADZ); m, constant; Tuadv and Tuadz, 
water residence time in CSTR (ADV, ADZ); L, reach length; Tsadv and Tsadz, total solute travel time (ADV, ADZ); α and τs, 
advection delay (ADV, ADZ); Fadv, advection delay coefficient; Tadz, dead zone residence time.
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and concentrations were calculated following Yang et al. (2015). It was checked that the addition of HgCl2 did not 
affect the determination of CO2 (Borges et al., 2019; Koschorreck et al., 2021).

The specific flux FCO2 was not related to water temperature, discharge, depth, or velocity. Thus kz = 0.022 ± 0.004 m hr −1 
was estimated as the slope of the regression line between specific CO2 flux and CO2 saturation deficit (Figure S3 
in Supporting Information S1). In theory, the regression line should go through the origin, but the uncertainties 
were reasonable given the modest range of dissolved CO2 saturation (70%–267%). Thus, knowing the average depth 
(z = 1.82 m) during the chamber runs, the gas exchange coefficient was calculated for CO2 as kCO2 = 0.012 ± 0.002 hr −1.

Finally, the oxygen gas exchange coefficient k was simply calculated from k = kCO2/0.81 (Demars, 2019), where 
the constant 0.81 accounts for differences in the rates of CO2 and O2 diffusion in water independently of temper-
ature (Davidson, 1957). The estimate of k (0.35 ± 0.07 days −1) indicated low gas exchange, comparable to other 
rivers with similar depth-velocity (<2 days −1, Palumbo & Brown, 2014). k was used as a constant in the metabo-
lism models (in Equations 6, 7, and 9) to simulate reaeration flux.

3.5. Model Application and Parameter Estimation

We developed the model code in Python (3.6.3) and it is available on Zenodo repository (Pathak, 2022). Flow 
and solute dynamics in the river were described using ordinary differential equations, and solved through an 
accounting method using finite difference approximation and inverse modeling using odeint() function from the 
Scipy package (v1.5.0) in python. The odeint() function solves ordinary differential equations using lsoda solver 
from the FORTRAN library odepack.

The boundaries of the river network for model implementation were decided based on data availability. The 
modeling approach presented here requires observations at minimum of two sites in the river, one for input and 
one for parameter calibration. The flow routing model was first implemented at 5 min time-steps for the river 
stretch between Brokke and Hekni since flow hydrographs were available at these two sites. Flows at Rysstad Øy 
and Straume were then simulated using the optimized parameters between Brokke and Hekni. The solute model 
was implemented at 5 min time-steps for the river stretch between Rysstad Øy and Straume since oxygen obser-
vations were available at these sites. Although the metabolism model implementation in this study is limited to 
one reach, the model can be extended for multi-reach applications (code available by Pathak, 2022).

Model parameters in the inverse model were estimated using a two-step calibration process (similar to Sincock & 
Lees, 2002), where flow parameters were first optimized with respect to the observed flow, prior to the optimi-
zation of metabolic parameters. Flow parameters can be optimized between the gauging sites on reach-by-reach 
basis in downstream direction. Flow time-series at Brokke and Hekni were used to first optimize Fr parameter. 
Flow at Rysstad Øy and Straume were then modeled using the optimized value of Fr.

Solute travel times in the River Otra were derived based on velocities as described in Section 3.3 (Table 1). Next, 
metabolic parameters (PGPPmax, kPAR, RER) were optimized in the process of fitting oxygen time-series. Model 
parameters were optimized using a least squares minimization approach with the Nelder-Mead algorithm (Gao 
& Han, 2012) from the lmfit package (v1.0.1) in Python. Lower and upper bounds were provided from prior 
knowledge to constrain the inverse model parameters and avoid parameter equifinality. Initial values of PGPP, 
kPAR, and RER were provided from the outputs of the two-station accounting method. Fadv was optimized in the 
modified two-station model (ADV formulation, accounting method) by minimizing the residual sum of squares 
of GPP-PAR link function (Equation 16), and was used as a constant in the inverse ADV model. Metabolism 
parameters were assumed to be constant over a period of 24 hr for a given reach. Summaries of parameters and 
terms used in different model formulations are provided in Tables S2 and S3 in Supporting Information S1.

We sampled Bayesian posterior distribution of solute model parameters using the Markov Chain Monte Carlo 
(MCMC) algorithm using the emcee package (v3.0.2) in python. This method calculated the log-posterior prob-
ability (ln  p(θtrue|D)) of the model parameters (θ) given the data (D),

ln 𝑝𝑝(𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝐷𝐷) ∝ ln 𝑝𝑝(𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) −
1

2

∑

𝑛𝑛

[

(𝑔𝑔𝑛𝑛(𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) −𝐷𝐷𝑛𝑛)
2

𝑆𝑆𝑛𝑛
2

+ ln (2𝜋𝜋𝑆𝑆𝑛𝑛)
2
)

]

 (21)

where ln  p(θtrue) is the log-prior. The second term on the right represents log-likelihood for the nth observation, 
ln  p(D|θtrue), where gn is the generative model, Dn is the data and Sn is the measurement uncertainty. Note that we 
did not use the MCMC algorithm for parameter optimization. Instead, we first optimized the model parameters 
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using the Nelder-Mead algorithm and later used the MCMC algorithm to sample from the posterior distribution 
of these optimized values to obtain parameter uncertainties and covariance.

4. Results
Performances of flow routing and metabolism models were evaluated separately. River flows were simulated 
ahead of the metabolism estimation and outputs from the flow routing model were fed as inputs in the metabolism 
model. An initial visual inspection of flow and DO curves showed that water traveled faster than DO within the 
study reach (Figure 3). Such a time lag could result either from the dual water regulation at Brokke and Hekni or 
from the excessive vegetation in the river reach between Rysstad Øy and Straume. Therefore, to account for this 
time lag, we included both potential causes in the model formulations that is, pure advection (ADV, Equation 7) 
and also including transient storage (ADZ, Equation 9) for metabolism estimation. In this section, we present the 
results of the flow routing and metabolism model applications. Furthermore, we provide posterior probability 
distribution of optimized model parameters in the inverse metabolism model.

4.1. Influence of the Hydropower Plant on DO Dynamics Along the Reach

The O2 turnover in the second section (sites 2–3) was only 14%, calculated as O2,turnover = 1 − 1/exp(kL/u) (rear-
ranged oxygen footprint equation, Demars et al., 2015), where L = reach length (4,660 m), u = average water 
velocity (8.03 m min −1) and k = gas exchange coefficient (0.00025 min −1). The output suggests that 86% of the 
oxygen variability at Straume (site 3) can be attributed to the variability of oxygen at Rysstad Øy (site 2). It is well 
known that hydropower operations drive the variability of total dissolved gas at Rysstad Øy (Pulg et al., 2016). 
Hence, the conventional one-station model (Appling, Hall, Yackulic, & Arroita, 2018; Odum, 1956) or aver-
aged two-station model (Demars, 2019; Demars et al., 2011) would not provide reliable metabolism estimates 
in the study section (see Text S4 in Supporting Information S1). It also highlights the difficulty of the task of 

Figure 3. Time-series of observed dissolved oxygen concentrations C and observed flow Q (interpolated at 5 min interval) (a) and time-series of observed mass flow 
rate of oxygen and observed flow Q (interpolated at 5 min interval, line plot with shaded area) at sites within the study stretch (b). Brokke, site 1, Rysstad Øy, site 2, 
Straume, site 3, Hekni, site 4. Tflow, travel time of the flood wave; Ts, solute travel time.
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disentangling metabolism from background noise, notably the hydropower plant effluent at Brokke representing 
87% of median flow that is, most of the O2 mass flux.

4.2. Flow Routing Model

The flow routing model was able to capture the timing and magnitude of flow peaks and troughs (Figure 4). The 
model estimated average 61% retention for flow in the river stretch (Fr = 0.61). Minor discrepancies between 
modeled and observed flows were expected because the flow routing model does not account for the effect of 
flow regulation at the downstream (Hekni) end that causes rapid rises and falls in water level at Hekni. Neverthe-
less, the flow routing model satisfactorily reproduced flow variation at Hekni with goodness-of-fit (R 2) of 0.87 
(Figure 4b).

4.3. Modified Two-Station Model (Accounting Method)

Modified two-station model formulation with only pure advection (ADV) performed better than the formulation 
with pure advection plus transient storage (ADZ; Figure 5). The two-station ADZ model simulated sudden drops 
in NEP at Straume around mid-day, suggesting a sudden decrease in GPP around mid-day since ER was assumed 
to be constant. Variation in PAR did not explain the mid-day drops in GPP (Figure 5c). While an afternoon lull 
in GPP has often been reported, the estimated mid-day drops in NEP were not driven by biological production, 
but indicated a systematic error in the metabolism estimates resulting from errors in the simulation of DO mass 
flux. The mass flux of DO in the river largely followed flow variation. The upstream site (Rysstad Øy) showed 
concurrent decline in flow and DO in the afternoon owing to changing water demand for power plant operations 
(Figure 3). The downstream site (Straume) did not show a concurrent decline in DO and flow, but showed shoul-
ders in the DO time-series earlier in the day (around mid-day). These shoulders result from delayed transport of 
DO from Rysstad Øy to Straume (Figure 3) since oxygen variation at Straume is highly influenced by oxygen 
variation at Rysstad Øy (explained in Section  4.1). Although the two-station ADZ model accounts for these 
delayed transport mechanisms through transient storage influence, the modeled NEP did not match our expecta-
tion. Better evidence of the ADV model outperforming the ADZ model is presented in Figure 5.

Both models showed a positive relationship between photosynthesis and light, with saturation of photosynthesis 
under high light intensity (Figure 5). The ADV model (R 2 = 0.56, Figure 5a) represented a slightly better regression 

Figure 4. Comparison of flow observations at Brokke (site 1) and Hekni (site 4) sites (a) and modeled and observed flows at 
Hekni site (b) at 5 min time-steps.
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fit than the ADZ model (R 2 = 0.44, Figure 5b) for the GPP-PAR link function 
(Equation 16). The estimates of half-saturation light intensity kPAR (PAR at 
which half the maximum GPP is attained) in both models (Figure 5) were in 
line with what is commonly observed in freshwater systems (kPAR = 100–500 
μmol-photons m −2 s −1, Demars et al., 2011). The estimates of PGPPmax and 
kPAR fitted in the GPP-PAR link function (Figure 5) served as priors in the 
inverse model when simulating GPP as a function of PAR.

4.4. Inverse Metabolism Model

Both ADV and ADZ formulations captured the overall DO variation at 
Straume (Figure 6), but the ADV model performed significantly better than 
the ADZ model to capture the overall trend and magnitude of oxygen vari-
ation. The ADZ model showed a small time lag between the observed and 
modeled DO concentrations, which indicates inaccuracies in the simula-
tion of DO mass flux with flow. Note that the flow-velocity relationships 
derived for TDG in the study reach do not cover the entire range of observed 
flows during the modeling period (e.g., equations derived for velocities at 
Q > 50 m 3 s −1 for reach 2, Figure S2 in Supporting Information S1).

Estimated values of metabolism parameters in the ADV model are gener-
ally lower than the estimates of the ADZ model (Table S4 in Supporting 
Information  S1). The ADV model (R 2  =  0.96) derived a better overall 

Figure 5. Nonlinear regression between gross primary production (GPP) and photosynthetically active radiation (PAR) in the modified two-station (a) ADV and (b) 
ADZ models at Straume (site 3). (c) shows the variation in net ecosystem production (NEP) and PAR in the modified two-station models at Straume (site 3).

Figure 6. Comparison of modeled and observed dissolved oxygen 
concentrations at 5 min time-steps at Straume (site 3) in the inverse (a) ADV 
and (b) ADZ formulations.
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goodness-of-fit than the ADZ model (R 2 = 0.83). Therefore, we selected the ADV model  to sample Bayesian 
posterior distribu tion of metabolism parameters using the MCMC algorithm. PGPPmax and RER parameters showed 
a strong positive correlation during the first 2 days of the modeling period (>0.86). Other significant correlations 
were observed for half-saturation light intensity with maximum GPP (kPAR-PGPPmax, 0.95) and with respiration 
rate (kPAR-RER, −0.63) on the third day. Despite these high correlations, we find that the median values (and 
maximum likelihood estimates) of all metabolism parameters lie in a close range of the values optimized by 
the Nelder-Mead minimization algorithm (within 1 − σ uncertainty; Table 2, Figure 7). The performance of the 
MCMC algorithm was judged using the estimate of average acceptance fraction, which was found to be within an 
acceptable range (0.2–0.5, Foreman-Mackey et al., 2013) in all cases. Figure 8 shows the variation in NEP and 
the relationship between GPP-PAR as estimated in the  inverse ADV model.

5. Discussion
The MUFT model application here demonstrates how the impact of hydropeaking (i.e., sub-daily flow fluctua-
tions) and transient storage can be included in the estimation of metabolism. Commonly used one-station models 
are not suitable for river reaches with large discontinuities (e.g., hydropower dams, waste water treatment plants; 
Appling, Hall, Yackulic, & Arroita, 2018; Demars et al., 2015). In such cases, two-station models are advanta-
geous, but are not completely immune to flow fluctuations during the period of analysis (Hall et al., 2016) and 
work only at a river reach scale (Demars et al., 2015). Additionally, these models do not account for the influence 
of transient storage on DO transport in river reaches. The MUFT model addresses these limitations by coupling 
an unsteady flow routing model with the two-station metabolism method, modified to account for transient stor-
age zones. The model simulates river reaches as cells connected in series with advection time delay and thus, it is 
possible to estimate metabolism at a larger spatial scale including at sites where continuous DO observations are 
not available, but observations of other environmental variables are available (e.g., Pathak et al., 2022; Segatto 
et al., 2020). The model structure allows translation of upstream changes in river flow and quality dynamics (e.g., 
hydropeaking, pollution loading) to downstream sites of interest. Therefore, future model users may test its appli-
cation for ecological assessments in response to river regulation/restoration actions under changing environmen-
tal conditions. A comparison of MUFT model performance with the commonly used one-station and two-station 
models is demonstrated in Text S4, Figure S6, and Table S5 in Supporting Information S1.

MUFT model application requires continuous time-series of DO, discharge, water temperature and atmospheric 
pressure at a minimum of two sites in the river reach for model input and calibration. PAR is also crucial and 
ideally should be measured at the river site. However, when PAR measurements are not feasible, it can be modeled 
using remote sensing information (Hall et al., 2015; Holtgrieve et al., 2010; Waylett et al., 2013). Accurate esti-
mation of mean velocity and solute residence time is important, especially in river reaches with significant tran-
sient storage (Lees et al., 2000). Ideally, a conservative tracer such as salt slug (Hall & Hotchkiss, 2017) should 
be used to derive residence time and velocity estimates, but other approaches (e.g., use of TDG as shown here) 
may be employed if estimates can be validated with observations. Furthermore, tracer experiments for varying 
discharge may help derive empirical relationships between discharge and velocity, which is useful for upscaling 
metabolism estimates (Raymond et al., 2012).

The model can be applied using an accounting method (book-keeping) and/or inverse modeling approach. The 
model also allows flexibility in selecting an appropriate model structure to suit hydrological and solute transport 
characteristics in the river, as demonstrated here with the application of ADV and ADZ models in the River 

Table 2 
Median Values of Posterior Probability Distribution of the Inverse ADV Model Parameters With 1 − σ Uncertainty 
Derived From the Markov Chain Monte Carlo Runs and Optimized Parameter Values by the Nelder-Mead Least Squares 
Minimization Algorithm (in Brackets)

Parameter Day 1 Day 2 Day 3

PGPPmax 8.64 ± 0.16 (8.64) 12.38 ± 0.12 (12.96) 11.52 ± 0.24 (11.52)

kPAR 144 ± 5 (144) 144 ± 1 (144) 461 ± 32 (461)

RER 3.46 ± 0.09 (3.46) 4.61 ± 0.05 (4.32) 4.03 ± 0.04 (4.03)

Note. Units are g O2 m −2 d −1 for PGPPmax and RER, and μmol-photons m −2 s −1 for kPAR.
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Figure 8. Estimated net ecosystem production (NEP) (a) and modeled GPP-PAR relationship (b) at Straume (site 3) in the 
inverse ADV model. GPP, gross primary production and PAR, photosynthetically active radiation.

Figure 7. Posterior distribution of inverse ADV model parameters gppmax (PGPPmax, maximum gross primary production), kpar (kPAR, half-saturation light intensity), 
and er (RER, ecosystem respiration) using Markov Chain Monte Carlo algorithm on day 3 at Straume (site 3). Blue lines show the median values of posterior probability 
distribution of model parameters. _lnsigma parameter is used to estimate the true uncertainty in the data.
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Otra. The better performance of the ADV model compared to the ADZ model in our case study suggests that 
despite the initial hypothesis, vegetation may not produce significant transient storage (ADZ) in the river and that 
introduction of pure transportation delay (ADV) in the model may be sufficient to characterize DO dynamics at 
Straume during the modeling period. Due to limited data availability, it is difficult to confidently pinpoint the 
dominant transport mechanism in the river. The dominant transport mechanism in rivers may differ with varying 
discharge, channel morphology, and bed composition. For example, ADZ model may be required in larger gravel 
bed rivers with extensive hyporheos or rivers with vegetated side pools. Since, this study aims to present a general 
model application for metabolism estimation, we do not delve in to the specifics of the process-dynamics in the 
River Otra. Nevertheless, a comparative modeling approach such as MUFT may help identify where the ADV or 
ADZ model is required to explain river oxygen dynamics. In the following sub-sections, we discuss the differ-
ences in the MUFT inverse and accounting modeling approaches along with their limitations and the possibilities 
of future model improvements.

5.1. Comparison of the Inverse Model With the Modified Two-Station Model

Discrepancies in the outputs of the inverse and modified two-station models mainly arise from the differences in 
the model structures. For example, the numerical solution of the ODE equation in the modified two-station model 
uses a simple Euler finite difference scheme as opposed to a more robust lsoda solver from the FORTRAN library 
odepack (Hindmarsh, 1983) in the inverse model. Moreover, both models characterize GPP in different ways. The 
accounting approach, although advantageous for not assuming the type of relationship between GPP and PAR, 
may fail to segregate the influence of flow on DO mass flux from the influence of biological production on DO 
transformations, when DO mass flux and/or solute-lag coefficient are not characterized accurately. On the other 
hand, the inverse model is able to segregate these influences up to a certain extent because GPP is modeled as a 
function of PAR.

Another difference between the two approaches is the parameter calibration process. The two-station method 
involves an accounting approach where NEP is directly estimated from oxygen observations without any param-
eter calibration procedure. Daily average ER is then estimated during dark hours, and GPP is calculated as a 
difference between NEP and daily average ER. The inverse model, on the other hand, optimizes model param-
eters in the process of fitting modeled DO to observed DO time-series using a least squares minimization algo-
rithm; hence, providing more confidence in the model estimates. Admittedly, the inverse approach includes more 
number of model parameters, corresponding to a larger number of degrees of freedom and consequently, the risk 
of parameter equifinality (Spear & Hornberger, 1980). However, as demonstrated in this study, equifinality may 
be reduced by constraining the parameter space with prior knowledge of the river system and by minimizing the 
number of unknown parameters by using field measurements to the extent feasible (e.g., Du et al., 2014). Often, 
random sampling methods such as MCMC algorithms are useful to estimate uncertainty in the optimized model 
parameters (e.g., Segatto et al., 2021) as represented in this study. Furthermore, sensitivity analysis may also be 
used to identify the most influential parameters for the simulations (e.g., Vandenberghe et al., 2001).

Although the modified two-station approach is simpler and quicker compared to the inverse model, its applica-
tion is limited to a much smaller spatial scale, that is, river-reach scale. Additionally, the two-station accounting 
approach relies on continuous DO measurements at both sites in the river reach of interest, which is often not 
possible due to adverse field conditions, drifting of sensors, etc (Wagner et al., 2006). On the contrary, the inverse 
model is an apt alternative to estimate long-term trends in metabolism at a river-network scale even when there 
are gaps present in continuous DO measurements at calibration sites. Despite the differences laid out here, we 
showed that the outcomes from the two-station accounting approach are useful to constrain the metabolism 
parameters in the inverse model. Therefore, both approaches are complementary rather than competitive.

5.2. Modeling Limitations and Future Efforts

The parsimonious model MUFT relies on certain assumptions. For example, the flow routing model approxi-
mates constant flow parameters for the entire reach between Brokke and Hekni because it employs reach-by-reach 
calibration method between gauging stations. In this study, a constant retention parameter was assumed for the 
entire river section between Brokke and Hekni. This assumption is not realistic since river hydraulics vary within 
the stretch (discussed in Section 3.3). Although we accounted for heterogeneity using reach-wise flow-velocity 

 21698961, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007245 by N
orw

egian Institute O
f Public H

ealth, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

PATHAK AND DEMARS

10.1029/2022JG007245

16 of 20

relationships in the flow routing model, such data may not be easily available in other rivers. It is important to 
estimate flow parameters precisely because small errors in flow parameters may result in large errors in metab-
olism estimates when flow dominates the mass flux of oxygen in the river. Multiple nonlinear storage tanks 
(nc > 1) may be more appropriate when the river section is heterogeneous, but increasing nc value did not signifi-
cantly improve model performance in this case. Parameter sensitivity analysis (e.g., Sincock et al., 2003) may also 
be employed prior to MCMC simulations to identify an appropriate model structure and reduce bias in the flow 
parameters. However, a more detailed investigation of parameter bias is out of the scope of this study.

It is difficult to derive a physical understanding of travel time mechanisms because of the lumped parameter 
structure of the MUFT model. Characterization of oxygen travel time from flow-based parameters integrates 
flow and metabolism models and therefore, overcomes this issue to a certain extent. However, it is still difficult 
to relate travel time parameters to river hydraulic properties and interpret the physical significance of model 
coefficients because of the crude description of dead zone (ADZ, Wallis et al., 1989) and advective transport 
(ADV, Beck, 1976) in the model. For example, we found ADZ residence time to be poorly related to metabolism. 
A lack of a strong relationship may partly be attributed to the assumption that TDG velocity ≈ solute veloc-
ity in the river. This assumption may introduce some bias in NEP estimates. Conservative tracer experiments 
may help characterize solute travel time parameters (e.g., Tsadz, Tadz, β) more accurately and consequently, help 
reduce the bias in metabolism estimates. A poor relationship may also occur from model's inability to account for 
the diversity of transient storage components that contribute to different metabolic processes (e.g., autotrophic 
and heterotrophic production; Haggerty et al., 2009). One way to account for diverse transient storage zones is 
through resazurin tracer experiments, to segregate metabolically active transient storage from a less-active tran-
sient storage (Argerich et al., 2011; Haggerty et al., 2009). However, the possibility of a weak or non-existent 
relationship between transient storage and ecosystem functioning cannot be neglected (Bernhardt et al., 2002; 
Webster et al., 2003). Nonetheless, in spite of limited available data and a simplified structure, both formulations 
of the model are able to provide fairly accurate predictions of oxygen transport and dispersion in this as well as 
previous studies (Lees et al., 2000; Santos Santos & Camacho, 2022). The MUFT model thus offers an alternative 
with a trade-off between accuracy and complexity.

Another simplification in the MUFT model is in the way in-stream processes are modeled. The ADZ formulation, 
in particular, assumes that metabolic activity occurs in the transient storage zone, and not during oxygen advec-
tion. Lees et al. (1998) proposed a mass decay term for non-conservative solutes (e.g., ammonium). However, 
it is difficult to characterize mass decay of oxygen during advection through a single term, when coupled with 
stream metabolism approach. On the other hand, the ADV formulation does not have this issue since it assumes 
that advection process is dominant in the river reach. The model also includes a simple formulation of metab-
olism fluxes, but a more complex formulation may be included if necessary. We find that a Michaelis-Menten 
type equation adequately simulates GPP in the River Otra, but the model can be easily modified to include other 
formulations such as linear (Payn et al., 2017) or hyperbolic tangent function (Holtgrieve et al., 2010; Jassby 
& Platt, 1976). We assume constant ER over a day to keep the model structure simple, but ER may be varied 
as a function of water temperature (Holtgrieve et al., 2010; Song et al., 2018) if deemed necessary in the river 
system. Estimate of gas-exchange coefficient k is crucial since a small bias in k may lead to a large bias in metab-
olism estimates (Hall & Ulseth, 2020). k may be modeled as a function of river hydraulic properties (Raymond 
et al., 2012) or may be estimated during model calibration with prior information from empirical relationships 
or direct measurements (Holtgrieve et al., 2010). Here, k is estimated from floating chamber studies, performed 
under a limited range of flows. Use of a constant k value during the modeling period was adequate in this case 
because the study reach represented slow-flowing water with considerably low gas-exchange compared to metab-
olism, thus limiting biases in metabolism from biases in k.

A full dynamic flood wave routing, based on Saint-Venant's equations and commonly used in one-dimensional 
hydrological models, is suitable in unsteady flow conditions. The MUFT model uses a simpler flow routing 
model (Sincock & Lees, 2002) than a dynamic wave routing model (see Payn et al., 2017). The long reaches and 
time-steps (Ts, t − α, t − τs) in the MUFT model create a physical anomaly that is, the advection delays (α for 
ADV, τs for ADZ) increase when discharge drops and thus the time-step terms t − α and t − τs at time t “look” 
further back in time as time progresses (see Figure S7 in Supporting Information S1). The discretization proce-
dure of Payn et al. (2017) is likely a more accurate procedure to estimate metabolism than MUFT, but at the 
cost of extra complexity. Similarly, transient storage models generally use one-dimensional, advection-dispersion 
equations (Bencala & Walters, 1983; Runkel, 1998) to simulate solute movement, albeit assuming steady flows 
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or estimating transient storage under different flow volumes (e.g., Manson et al., 2010). The MUFT model, on 
the other hand, takes a simpler approach by characterizing river reaches as nonlinear storage zones in series 
(zero-dimensional), and simulates water and solute movement using ordinary differential equations. The choice 
of a simpler structure in the MUFT model is beneficial because different modules (e.g., flow routing, transient 
storage zone, and metabolism) of the model are compatible, and because the model offers benefits of reduced 
complexity (zero-dimensional) with less number of model parameters over one-dimensional hydrological and 
solute models. Reduced complexity in models is advantageous since it minimizes data requirements, model 
sensitivity, and issues of parameter equifinality (Lindenschmidt, 2006).

6. Summary and Conclusion
This study presents a coupled modeling approach (MUFT) to estimate whole-stream metabolism in rivers with 
unsteady flow conditions and transient storage zones. The MUFT model integrates flow and oxygen mode-
ling based on travel-time relationships proposed by Sincock and Lees  (2002), which were originally built on 
QUASAR (Whitehead et al., 1997) and ADZ (Lees et al., 2000; Wallis et al., 1989) model equations. We propose 
an additional model formulation for dominant advective transport (ADV) based on the model developed by 
Beck and Young (1975). The MUFT approach can be applied through inverse modeling or accounting method 
(two-station method) according to user's preference and data availability. We demonstrated the application of 
the MUFT model in the River Otra in southern Norway. We found that the accounting method is simpler, but 
shows high bias in metabolism estimates when oxygen mass flux is not precisely modeled. The inverse mode-
ling approach is more robust as it employs least squares minimization algorithm to optimize model parameters. 
Moreover, the inverse model supports investigation of parameter uncertainties and correlations through Bayesian 
sampling of posterior distributions.

The MUFT approach presents opportunities to estimate whole-stream metabolism in hydropeaking river envi-
ronments as well as in rivers influenced by transient storage zones. With increasing feasibility of high-resolution, 
long-term oxygen monitoring in rivers (Appling, Hall, Yackulic, & Arroita, 2018; Appling et al., 2018; Bernhardt 
et al., 2022), it is possible to extend the model for network-scale metabolism prediction. Using the knowledge of 
river hydraulics, the inverse model may also be able to predict metabolism rates at sites within the river network 
where continuous monitoring is not carried out (e.g., Pathak et al., 2022). In future, the model can be imple-
mented for metabolism prediction under changes such as warming, extreme weather events, and river manage-
ment practices—a research area that calls for more attention (Bernhardt et al., 2018).

Data Availability Statement
v0.1.0 of the MUFT model developed for metabolism estimation and data used in the model development and 
application are preserved at https://doi.org/10.5281/zenodo.7197544, available via Creative Commons Attribution 
4.0 International license and developed at https://github.com/d-pathak/MUFT-model/tree/v0.1.0 (Pathak, 2022).
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