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ABSTRACT: The European and U.S. chemical agencies have
listed approximately 800k chemicals about which knowledge of
potential risks to human health and the environment is lacking.
Filling these data gaps experimentally is impossible, so in silico
approaches and prediction are essential. Many existing models are
however limited by assumptions (e.g., linearity and continuity) and
small training sets. In this study, we present a supervised direct
classification model that connects molecular descriptors to toxicity.
Categories can be driven by either data (using k-means clustering)
or defined by regulation. This was tested via 907 experimentally
defined 96 h LC50 values for acute fish toxicity. Our classification
model explained ≈90% of the variance in our data for the training
set and ≈80% for the test set. This strategy gave a 5-fold decrease in the frequency of incorrect categorization compared to a
quantitative structure−activity relationship (QSAR) regression model. Our model was subsequently employed to predict the toxicity
categories of ≈32k chemicals. A comparison between the model-based applicability domain (AD) and the training set AD was
performed, suggesting that the training set-based AD is a more adequate way to avoid extrapolation when using such models. The
better performance of our direct classification model compared to that of QSAR methods makes this approach a viable tool for
assessing the hazards and risks of chemicals.
KEYWORDS: machine learning, LC50, QSAR, toxicity categorization, hazard assessment

■ INTRODUCTION
The chemical space of the human exposome is ever expanding
with a wider diversity of chemicals from the points of view of
both fate and toxicity.1−7 The latest estimates of the numbers
of environmentally relevant chemicals based on the chemical
registries and production volumes are estimated to be between
350k and 800k.2,8 For most of these chemicals, there is little to
no knowledge about their environmental fate or toxicity.1−5,8,9

Because the experimental assessment of the fate and toxicity of
such a large number of chemicals is not feasible, modeling
approaches to predict hazard indicators play an increasingly
important role in chemical prioritization and risk assess-
ment.10−13

Prediction of the physicochemical properties and biological
activity (e.g., aquatic toxicity) has been one of the main
approaches to dealing with the structural diversity in the
chemical space.10−13 Most existing modeling strategies employ
quantitative structure−activity relationship (QSAR) models
and rely on building linear and/or nonlinear relationships
between the structural descriptors and the modeled activity/
property.10,14−17 These models are often built on very
homogeneous training sets (i.e., similar chemical classes),
hence the assumption of linearity.17,18 In fact, efforts have
recently been spent on using more heterogeneous training sets

as well as moving away from the assumption of linear-
ity.13,14,18,19 Independent of the level of heterogeneity of the
training data set, QSAR models are very limited in the number
of measured activities as well as the number of chemicals
evaluated (e.g., ∼1000 chemicals).13,14,18,19 The main con-
sequence of this limitation is the fact that the models are used
in extrapolation mode when used for prediction. This implies
that the new data points are not represented adequately by the
chemicals within the training set and are, thus, outside of the
model applicability domain. The use of these models for
extrapolation may result in very large prediction errors.13,19,20

For these predicted and measured activities (i.e., toxicity
and/or other properties) to be translated into chemical
management actions, they are divided into different categories
using thresholds based on expert knowledge.1,3,21−24 Examples
for such categories are environmental hazard categories defined
by the Globally Harmonized System of Classification and
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Labeling of Chemicals (GHS) or thresholds for persistence
(P), bioaccumulation potential (B), and toxicity (T) defined
under the European Registration, Evaluation, Authorization
and Restriction of Chemicals (REACH).25 The chemicals that
fall within specific categories are then subjected to more active
monitoring and eventually legislation.24,26−28 This process
triggers wider experimental evaluation of chemicals within
high-priority categories, which may result in the adjustment of
the previously set thresholds, based on the new experimental
evidence.24,26,29 However, for this chemical management
strategy to be effective, a more accurate and reliable chemical
prioritization (i.e., chemical categorization) approach is
warranted.

In this study, we propose an alternative strategy for chemical
prioritization on the example of acute aquatic toxicity, where
the QSAR-based activity prediction step is skipped. Our direct
classification model directly converts molecular descriptors
into chemical categories, avoiding the errors inherent to the
activity prediction step. As a proof of concept, this strategy was
tested with experimentally determined 96 h lethal concen-
tration (LC50) values for fish, for 907 organic chemicals. We
compared the results of our direct classification strategy with
the results of the conventional QSAR approach. Additionally,
our modeling strategy was expanded to 32 000 chemicals from
NORMAN SusDat.27 Finally, we performed a critical
evaluation of applicability domains for all of the models in
this study.

■ METHODS
Overall Workflow. The data set used for our model

development, validation, and testing consists of calculated
descriptors, the monoisotopic mass of each chemical, and
experimentally determined LC50 values (96 h) for acute fish
toxicity (see details in Data Sets). The LC50 values were
divided into four categories via k-means clustering: very low
toxicity, low toxicity, moderate toxicity, and high toxicity. This
categorization followed the typical evidence-based effect
modeling categorization.30−32 Additionally, regulatory-defined
toxicity categories were retrieved from the GHS. We assessed
the prediction accuracy of the two types of toxicity categories
by employing two different modeling strategies: a conventional
QSAR regression model and direct classification (Figure 1).
The QSAR regression model simulated the case in which the
acute fish toxicity (as LC50) is predicted on the basis of
molecular descriptors via a QSAR model and then the

chemical is assigned a specific toxicity category in a separate
step. On the contrary, the direct classification model skipped
the LC50 prediction step and directly classified the chemical of
interest into one of the initially defined toxicity categories. This
comparison was performed for the full data set (i.e., training set
and test set) to assess the accuracy of each approach in acute
fish toxicity categorization.

Data Sets. We employed two different data sets for our
model development18 and model application.33 Our modeling
data set consisted of experimental acute fish toxicity values for
907 chemicals retrieved from three databases, namely, OASIS,
ECOTOX, and EAT5, and provided by Cassotti et al.18 The
data consisted of the concentrations causing death in 50% of
test fathead minnows (Pimephales promelas) over a test
duration of 96 h (LC50 96 h). More details regarding the
data curation are provided elsewhere.18 We will refer to this
data set as the “acute fish toxicity data set” hereafter. The
chemicals in this data set covered different chemical families,
including pharmaceuticals, pesticides, conventional persistent
organic pollutants (POPs), and industrial chemicals. Through-
out this article, we refer to the 907 chemicals with measured
toxicity and curated descriptors as the full “acute fish toxicity
data set”, the portion used for model development and
validation as the training set, and the portion of the data used
for additional model testing of the final model as the test set.

The second data set (hereafter termed the “NORMAN data
set”) was an extract of ∼32 000 chemicals (31 722 chemicals),
including their predicted 96 h LC50 values for acute fish
toxicity (P. promelas) from the NORMAN SusDat database.34

This data set included only the chemicals that were reported to
be within the applicability domain of the QSAR model
developed by Aalizadeh et al.,34 which was used to test our
model applicability (Figure 2). This is the model employed by
the NORMAN Network for their risk assessment and chemical
management. When checking the overlap between the acute
fish toxicity data set and the NORMAN data set, we observed
∼100 common entries.

We calculated 2757 one-dimensional (1D) (i.e., constitu-
tional/count descriptors), two-dimensional (2D) (i.e., struc-
tural fragments), and three-dimensional (3D) (i.e., graph
invariants) molecular descriptors and PubChem fingerprints
for both data sets using the PaDEL software package,35

implemented via a python 3 wrapper called padelpy.
Additionally, the name of the chemicals, their SMILES,36

and their InChiKeys37 were retrieved from the PubChem
database38 via pubchempy API. To identify the unstable

Figure 1. Overall workflow of the study from the raw data to the final generated models.
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descriptors caused by the lack of convergence during the
structural optimization, we performed the descriptor calcu-
lations for the acute fish toxicity data set in triplicate. The
descriptors were scaled by the maximum of each descriptor in
the training set to minimize the impact of the descriptor
magnitude on the final models.39 After scaling, the variance of
each descriptor in the acute fish toxicity data set was calculated
and only the descriptors that had a variance of <0.1 were kept.
We assumed that the stable descriptors for the acute fish
toxicity data set are also stable for the NORMAN data set.
Therefore, the descriptors for this data set were calculated only
once. Additionally, the maximum of each descriptor in the
NORMAN data set was compared to those from the training
set (from the acute fish toxicity data set). The descriptors with
ratios of >100 were considered unstable and removed from
both data sets, resulting in a total of 2036 final descriptors out
of an initial 2780.

We also evaluated the coverage of the chemical spaces of the
data sets by principal component analysis (PCA) (Figure 2).
PCA is an unsupervised dimension reduction approach, which
enabled us to assess the underlying trends in our data sets by
combining several variables into a single principal compo-
nent.40 To perform PCA, we used the curated descriptors
matrix and in total two principal components.

Toxicity Categories. To categorize the chemicals on the
basis of their acute fish toxicity, we employed two different
strategies: (1) applying k-means clustering to derive four
categories from our acute fish toxicity data set and (2) using
predefined categories for acute aquatic hazard as defined in the
GHS.41

k-Means Clustering for Toxicity Categorization. The k-
means strategy divided the chemicals into four categories
consisting of high toxicity, moderate toxicity, low toxicity, and
very low toxicity accounting for 96 h LC50 values for fish
toxicity and monoisotopic masses of the chemicals. The k-
means clustering algorithm is an iterative clustering algorithm,
in which the distances between different measurements from a
set of user-defined centers (so-called centroids) are used to
cluster the data.40 This algorithm has the advantage of
incorporating more than one parameter, compared to expert
manual judgment in the clustering. Additionally, this algorithm,
given that it has randomly selected centroids in the first

iteration, requires further validation. Here we employed
bootstrapping to ensure the selected acute fish toxicity
categories (i.e., clusters) are robust enough for predictive
purposes. To do that, the fish toxicity data were randomly
divided into a 90% training set and a 10% test set. The training
set then was bootstrapped with replacement for 500 iterations,
to guarantee that each model is built on the basis of a unique
data set. The most commonly identified centroid over 500
iterations was selected as the final model and for acute fish
toxicity categorization. In the end, the final model was further
tested using the test set. During the categorization, we
provided the k-means algorithm with two variables, namely,
96 h LC50 values and monoisotopic masses, and four clusters,
following the category structures adapted by previous
studies.30

GHS Categorization for Acute Aquatic Hazards. In
addition to k-means clustering, we also used the three
categories for acute aquatic hazards of the GHS, which were
hard set thresholds.41 The three GHS-based categories for
short-term (acute) aquatic hazard are based on thresholds
derived from 96 h LC50 values for acute fish toxicity: high
toxicity (category acute 1, LC50 ≤ 1 mg/L), moderate toxicity
(category acute 2, 1 mg/L < LC50 ≤ 10 mg/L), and low
toxicity (category acute 3, LC50 > 10 mg/L) (see Table 4.1.1 in
ref 42).

Modeling. In this study, we developed two different
models: a QSAR regression model and a direct classification
model. The details of each model strategy are provided below.
Both models, once optimized with the acute fish toxicity data
set, were used with the NORMAN data set to further assess
their applicability.
QSAR Regression Model. We developed, optimized,

validated, and tested a random forest regression model using
the curated descriptors (independent variables) and the
experimentally defined LC50 values (dependent variable).
Random forest is a decision tree-based algorithm in which
several bootstrap data (i.e., training set) are given to several
decision trees. This assures that the data set given to each tree
is unique.40 Once the model is developed, the most common
decision tree model outcome is considered as the random
forest model prediction. The main advantage of the random
forest modeling strategy is the ability to handle nonlinearity
and noncontinuity in the data, which is highly relevant to
toxicity prediction.43 Here, the acute fish toxicity data set was
divided into a training set (90% of the full data set) and a test
set (10%). The training set was used for model development
and optimization, while the test set was utilized for further
evaluation of the data set. For the regression model, the model
hyperparameter optimization was performed with a 2D grid
with the number of trees ranging from 100 to 1000, whereas
the minimum number of points in each leaf varied from 1 to
21. The combination of 3-fold cross-validation and the out-of-
bag strategy enabled us to generate an optimized regression
model while defining the importance of each variable. The
variables that had relative levels of importance of >1% were
considered as essential variables for the model. This strategy
enabled us to quickly identify the variables most relevant to
our model’s accuracy.

The final optimized regression model consisted of 600 trees,
a minimum of four points in each leaf, and eight variables. This
regression model was employed to predict the 96 h LC50 values
for fish toxicity of the chemicals in the NORMAN data set. In a
second step, the predicted LC50 values were used to categorize

Figure 2. (a) Distribution of the experimental LC50 values used for
model development and validation. (b) Chemical space via PCA
covered by the acute fish toxicity data (i.e., training and test sets) and
the NORMAN data set, where the curated descriptors were used for
cluster analysis.
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the chemicals into the two types of toxicity categories
described above.
Descriptor-Based Direct Classification Model. We devel-

oped, validated, and tested a classification model to convert the
curated descriptors into the acute fish toxicity categories. For
this model, we employed random forest classification,
implemented via the ScikitLearn.jl julia package.44

For the direct classification, we split the acute fish toxicity
data set (i.e., curated the descriptors and toxicity categories)
into a training set (90% of the full data set) and a test set
(10%). To optimize the main model hyperparameters, the
number of trees, and the minimum number of points in each
leaf, we generated a grid with 20 steps for each parameter
ranging from 200 to 2000 and from 1 to 21 for the number of
trees and minimum data points in each leaf, respectively. For
each model, we performed 3-fold cross-validation to system-
atically assess the model accuracy. The model with the highest
cross-validation accuracy (i.e., 73%) was considered as the
optimized classification model. This optimized classification
model consisted of 1200 tress and a minimum number of
points in each leaf of four. To avoid overfitting during the
training process, when building the model, we set an out-of-bag
cross-validation,45 in which only a randomly selected fraction
(i.e., square root of the number of variables) of the variables
was fed to individual trees. The combination of out-of-bag
cross-validation and leaf purity was utilized to calculate the
importance of individual variables to the final model. To select
the relevant variables, we divided the variance explained by
each variable by the largest one and selected those that
contributed >1% to the model, thus 230 of 2036 variables.

To build the final model, the full acute fish toxicity data set
was used with the selected variables. In this case, all of the
selected variables were used for the final model building.
Additionally, this model was used to categorize the NORMAN
data set into the two types of acute fish toxicity categories
directly based on the curated descriptors.
Applicability Domain. To assess whether a chemical is

represented well by the model training set, we performed the
applicability domain assessment. The applicability domain
assessment was done by calculating the leverage of each
chemical compared to the training set.34 The leverage was
calculated using eq 1

h x X X x( )ii i
T T

i
1= (1)

where X is the matrix of the training set (including the
descriptors), xi is the vector of the descriptors for an individual
chemical, and the hii is the calculated leverage. The leverage
calculations are typically done only using the model variables,
in other words only the descriptors used for the optimized
model. In this study, we assessed both the full descriptor space
(i.e., assuming the model using all of the descriptors) and the
model specific descriptors (i.e., conventional approach). This
strategy enabled us to systematically assess which chemicals are
well represented by the training set.

Calculations. All calculations were performed using a
personal computer (PC) with an Intel Core i7 central
processing unit and 16 GB of RAM operating Ubuntu
20.04.2 LTS. All of the data processing and statistical analysis
were performed using julia language version 1.6.

■ RESULTS AND DISCUSSION
In this study, we developed a random forest-based direct
classification model to convert the molecular descriptors of
chemicals to predefined acute fish toxicity categories. This
model was developed, validated, and tested via an exper-
imentally defined data set of 96 h LC50 values for acute fish
toxicity for 907 organic chemicals. The result of this strategy
was directly compared to that of the conventional two-step
approach, first QSAR-based property prediction and then
toxicity categorization, for both the acute fish toxicity data and
a data set of ≈32 000 chemicals from NORMAN SusDat.33

Toxicity Categorization. The final k-means model
resulted in a clustering accuracy of 97.5%. This model was
then fed the full acute fish toxicity data set to define the
toxicity category of each chemical in that data set. The final
model was saved as a binary file to be used for prediction
(Figure 3). The k-means and GHS categories were used as

labels in two separate runs of the direct classification model,
while the 96 h LC50 values for acute fish toxicity predicted by
the QSAR regression model were converted into the two types
of acute toxicity categories in a second step.

When comparing the unsupervised k-means clustering-based
categorization with the expert knowledge-based categorization
from the GHS, we see a high level of similarity in the
thresholds (Figure 3). In fact, the main differences were
observed for chemicals with molecular weights of ≥400 Da and
LC50 values of ≥1 mg/L [0 log(mg/L)]. These chemicals in
the k-means categorization were considered part of the high-
toxicity category, while on the basis of the GHS categories,
they were considered moderate to low toxicity. When
calculating the similarity scores between the descriptors of
those chemicals and the two categories, we consistently
observed higher values for the high-toxicity category. This
indicates that those chemicals may be structurally more similar
to the high-toxicity category rather than the moderate- and/or
low-toxicity one. These similarities are better captured by the
k-means model, given that it uses two variables (96 h LC50 and
monoisotopic mass) and Euclidean distances for cluster
creation.

Performance of the QSAR Regression Model. The
residuals of the final and optimized QSAR regression model
were between −1 and 1 in LC50 units for ≈95% of the data

Figure 3. Distribution of the toxicity categories of the acute fish
toxicity data set via (a) the best k-means clustering model and (b)
based on GHS categories.
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(Figure S2). This model consisted of 600 trees and eight
variables, resulting in R2 values of 0.86 for the training set and
≈0.7 for both median cross-validation and the test set. The
observed levels of accuracy were comparable to those of
previously reported linear and nonlinear QSAR models17,34

(Figure 4). We observed up to 2.1 log(mg/L) overestimation

of the LC50 for values of ≤−1, while our model resulted in a
slight underestimation of toxicity for LC50 values of ≥5 (Figure
4 and Figure S2). Finally, we used the optimized model to
predict the 96 h acute fish toxicity LC50 values for the
NORMAN data set. When comparing the results of our
predictions to the predictions by Aalizadeh et al.,34 we
observed a clear linear trend (i.e., Pearson correlation
coefficient of 0.68) between the two predictions, further
indicating the validity of our model (Figure S3).

The optimized regression model included eight variables
from which two were related to the logP of the chemicals in
the training set (Figure S1). The most relevant variable was the
Crippen logP46 value explaining ∼35% variance of the final
model. This logP was calculated on the basis of 68 atomic
contributions. On the contrary, the second variable was
XlogP,47 implemented within PubChem.38,48 This logP
calculation also uses the atomic contribution of 87 groups
and additionally incorporates two correction factors, improving
its accuracy and expanding its applicability. Another relevant
variable for our regression model was the ZMIC1 descriptor,
which is a 2D descriptor indicating the level of symmetry in a
structure.35 Finally, the remaining relevant descriptors (i.e.,
excluding logP, XlogP, and ZMIC1 descriptors) were related to
molecular connectivity, polarizability, and hydrogen-bond
donation, which all have been shown to be relevant in
explaining the physicochemical properties and toxicity of
chemicals.15,17,34

Performance of the Descriptor-Based Direct Classi-
fication Model. The optimized direct classification model
resulted in a classification accuracy of 92% for the training set

and ∼80% for both the cross-validation and the test set, for the
four k-means categories. The final model used 230 variables
out of a total of 2036 curated descriptors. Similar to the
regression model, most of the important variables were a
combination of 2D descriptors and fingerprints (i.e., 3D)
(Figure S4). These descriptors included the four logP
calculations (e.g., CrippenlogP) as well as parameters related
to polarizability and charge distribution. These parameters are
all highly relevant to the mobility of the chemicals and their
binding potential with the active sites.15,18 As opposed to the
regression model, the most relevant variable explained only
≈1.5% of the variance (vs 35% for the regression model) in the
final model. Even though larger numbers of variables were
included in the model, the total number of variables was <30%
of the number of measurements, resulting in a mathematically
well-defined problem. Additionally, a larger number of
variables enables a better assessment of the model applicability
domain.

The direct classification model based on the three GHS
categories resulted in an accuracy of 94% for the training set
and ∼85% for the cross-validation and test set. This model,
similar to the previous one, had 236 highly important variables
that were included in the final model. The highly important
variables (e.g., top 20) for both models were exactly the same
as for the direct classification into the k-means categories with
similar levels of variance explained.

The reported statistics and the selected variables in our
classification models further indicated the applicability of our
model for the prediction of acute fish toxicity categories
directly from the molecular descriptors.

Classification versus Regression. The fish toxicity data
were used to predict the toxicity categories via both the
conventional QSAR regression model and the direct
classification strategies. The QSAR regression model resulted
in predicted LC50 values that were converted into the two
types of acute fish toxicity categories in a subsequent step. In
contrast, the classification model directly predicted the toxicity
categories. The predicted acute fish toxicity categories based
on both methods were compared to the true categories coming
from the measured 96 h LC50 values for fish toxicity to evaluate
the accuracy of each approach.

The direct classification method, for both cases, resulted in
∼4 times fewer misclassifications when compared to the QSAR
regression model. We observed 47 cases of misclassification for
the k-means-based categories and 41 cases for GHS categories.
This was in agreement with our expectations, given that the
total numbers of classes in GHS categories were smaller, thus
affording a lower probability of wrong classification. For the
QSAR regression model, we observed 178 cases of wrong
classifications for k-means-based categories whereas 163
incorrectly classified cases were observed for the GHS
categories (Figure 5). The direct classification strategy showed
a homogeneous distribution of the miscategorized chemicals in
the acute fish toxicity data set, for the k-means and GHS
categories. For the k-means categorization, the QSAR
regression model resulted in a large and homogeneous
distribution of wrong categorization, while for the GHS
approach, we observed a high density of miscategorization for
high- and moderate-toxicity groups (Figure 5).

Approximately 85% of the chemicals miscategorized via
direct classification overlapped with those wrongly categorized
via the QSAR regression model, regardless of the type of
categories. For example, a chemical that was consistently

Figure 4. Measured vs predicted 96 h LC50 values for acute fish
toxicity for (a) the training and test set during model optimization
and (b) the optimized model with the full acute fish toxicity data set.
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wrongly categorized by all of the methods was 1-hydroxypyr-
idine-2-thione (InChyKey, YBBJKCMMCRQZMA-UHFFF-
AOYSA-N) with a measured LC50 of 0.95 μg/L [i.e., −3.02
log(mg/L)]. This chemical was categorized as moderately
toxic by both models but is actually a high-toxicity chemical.
Upon examination of the structure of this chemical, it is clear
that this chemical is not very well covered by our training set.
In other words, there are not enough (at least four) chemicals
with a structure similar to this one in our training set. This
further indicates that the addition of more diverse chemical
structures to our training set will result in even more accurate
prediction of the toxicity categories. Additionally, the
replacement of the molecular descriptors with the topo-
graphical fingerprints,49 given their stability, may further
improve our prediction accuracy.

When comparing the distribution of the wrongly categorized
chemicals, we observed higher levels of homogeneity in the k-
means categories than in the GHS ones. This was consistent
for both the QSAR regression model and the direct
classification model. We also observed that for the GHS
categories, the QSAR regression-based and direct classification
models showed a high density of wrong categorization for
chemicals at the border between the high- and moderate-
toxicity regions. We interpret that this is mainly caused by the
larger number of categories and lower levels of rigidity in the k-
means approach compared to hard set thresholds (i.e., GHS
approach).

The predicted LC50 values using our optimized QSAR
regression model followed by the k-means clustering
categorization resulted in 81% consistent classification between
the acute fish toxicity categories generated by the direct
classification method (Figure S5). However, the predicted
LC50 values using the model developed by Aalizadeh et al.34

resulted in only 37% consistent toxicity categories. This may be
due to the fact that our QSAR regression and direct
classification models both had the same training set as well
as the fact that our QSAR regression model uses eight
descriptors while the model of Aalizadeh et al. uses only six
(three of which are logP values).

Overall, our direct classification strategy showed a better
performance in identifying the acute fish toxicity categories of
the chemicals directly from the molecular descriptors, rather

than passing via a QSAR regression model. We also observed a
higher level of consistency between the categories generated by
our models compared to that for another prediction method
(i.e., Aalizadeh model). We interpret that the main reason
behind the overall better performance of the direct
classification approaches is first and foremost the fact the
uncertainties associated with the QSAR regression models do
not impact the categorization. Additionally, the inclusion of a
larger number of descriptors in such models implies that higher
levels of structural features are incorporated. In fact, the low
level of variance explained by individual variables further
confirms this hypothesis. Our direct classification model can be
easily adapted to different types of predefined (acute fish
toxicity) categories, as demonstrated here by classifying the
chemicals following the categories for a short-term (acute)
aquatic hazard of the GHS. Overall, these results indicate the
viability of the classification strategy as a means of chemical
prioritization and management.

Applicability Domain. We also evaluated the impact of
AD selection for the assessment of the model coverage of the
chemical space. To perform such an assessment, we calculated
the leverage for the full descriptor space, QSAR regression
model descriptors, and the direct classification model
descriptors. Figure 6 depicts the plots of the scores for the
training set and the NORMAN data set and the associated
applicability domains.

With the full descriptor space (i.e., the curated descriptors
used for our model development), only 585 entries of the
NORMAN data set were covered by the training set. Using the
regression model descriptors (i.e., the nine most relevant ones)
resulted in ∼31 000 entries being covered by the training set.
On the contrary, on the basis of the descriptors of the direct
classification model, ∼27 000 entries were covered by the
chemical space of the training set. The observed trend is in
agreement with our expectations, given that the larger number
of descriptors provides a better coverage of different structural
characteristics of the chemicals. Upon examination of the
chemical space covered by the training set (i.e., 96 h LC50 for
acute fish toxicity) and the chemicals within the AD of the

Figure 5. Correctly vs wrongly predicted acute fish toxicity categories
based on (a) the QSAR regression model and k-means-based
categories, (b) the direct classification strategy based on k-means
categories, (c) the QSAR regression model using the GHS categories,
and (d) the direct classification strategy with GHS categories.

Figure 6. Applicability domain (AD) assessment (i.e., leverage
calculation) of the NORMAN data set, based on (a) the training set
(i.e., the full molecular descriptor space), (b) the QSAR regression
model, and (c) the direct classification model. The blue circles
represent the chemicals that are outside of the AD, the orange circles
those within the model applicability domain, and the green circles
those within the training set applicability domain.
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training set (i.e., the full descriptor space), a good level of
overlap is observed. This is not the case when looking at the
model specific ADs, implying an extrapolation with a much
larger level of prediction error. An example of such cases is
c a r b o n o t h i o y l b i s ( i m i n o m e t h y l e n e ) b i s -
(diethyldithiocarbamate) (InChyKey, SPQBHESGHZSSMQ-
UHFFFAOYSA-N), which was covered by the regression
model AD and was not covered by the classification or training
set AD. In fact, this chemical was one of the most different
chemicals compared to the chemicals in the NORMAN data
set (i.e., PC1 −11 and PC2 28). Therefore, it may be advisible
to use the training set AD (i.e., the full descriptor space) to
assess the training set coverage of the chemical space, rather
than the individual model ADs.

■ IMPLICATIONS FOR CHEMICAL ASSESSMENT
The results of our direct classification model showed its power
in categorizing the chemicals in terms of their acute fish
toxicity based on their specific molecular descriptors. Our
strategy can overcome the continuity assumption of QSAR
models, which are conventionally used to fill experimental data
gaps in the chemical assessment of structurally similar
compounds, directly impacting the size of the training set. In
other words, with our direct classification approach the
experimental data sets from different sources and for different
chemical families can be grouped to generate larger training
sets resulting in more accurate predictions. As demonstrated
here with the direct classification of the chemicals in the
NORMAN data set into hazard categories defined by the GHS
(based on acute fish toxicity), our approach can be adapted to
different predefined categories as prescribed by various
international regulations and/or classification or labeling
systems. The direct classification approach can be expanded
to other hazard categories (e.g., chronic toxicity) as well as to
fate (e.g., mobility or persistence) and shows great potential for
improving in silico tools for chemical hazard and risk
assessment.
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