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A B S T R A C T

Discontinuities in flood frequency curves, here referred to as flood divides, hinder the estimation of rare floods.
In this paper we develop an automated methodology for the detection of flood divides from observations and
models, and apply it to a large set of case studies in the USA and Germany. We then assess the reliability
of the PHysically-based Extreme Value (PHEV) distribution of river flows to identify catchments that might
experience a flood divide, validating its results against observations. This tool is suitable for the identification
of flood divides, with a high correct detection rate especially in the autumn and summer seasons. It instead
tends to indicate the emergence of flood divides not visible in the observations in spring and winter. We
examine possible reasons of this behavior, finding them in the typical streamflow dynamics of the concerned
case studies. By means of a controlled experiment we also re-evaluate detection capabilities of observations
and PHEV after discarding the highest maxima for all cases where both empirical and theoretical estimates
display flood divides. PHEV mostly confirms its capability to detect a flood divide as observed in the original
flood frequency curve, even if the shortened one does not show it. These findings prove its reliability for
the identification of flood divides and set the premises for a deeper investigation of physiographic and
hydroclimatic attributes controlling the emergence of discontinuities in flood frequency curves.
1. Introduction

Despite considerable efforts to achieve reliable estimation of rare
floods, these events are still among the most common natural disas-
ters (Wallemacq and House, 2018). The evaluation of their hazard
is however crucial for several applications, including the design of
hydraulic structures, risk planning and mitigation, and computation of
premiums in the insurance industry. Appraisal of the flood hazard is
especially difficult when the magnitude of the rarer floods can take
values which are several times to orders of magnitude larger than
commonly observed floods, resulting in a marked uprise of the flood
frequency curve beyond certain return periods (Rogger et al., 2012;
Smith et al., 2018).

Cognitive biases often lead to downplay the occurrence of such ex-
treme events (Merz et al., 2015, 2021), although the scientific literature
repeatedly signaled the pervasiveness of these behaviors terming them
in various ways. In fact, heavy-tailed distributions of floods (Farquhar-
son et al., 1992; Bernardara et al., 2008; Villarini and Smith, 2010),
inversions of concavity and step changes in flood magnitude–frequency
curves (Rogger et al., 2012; Guo et al., 2014; Basso et al., 2016) and
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large values of the ratios between the maximum flood of record and the
sample flood with a specified recurrence time (Smith et al., 2018) and
between empirical high flow percentiles (Mushtaq et al., 2022) are all
manifestations of a marked increase of the magnitude of the rarer floods
highlighted by means of different approaches. To further stress the
common nature of all these phenomena, in this study we favor none of
the previous locutions and instead label them as flood divides. The term
was chosen to highlight the existence of a discharge threshold which
marks the rise of progressively larger floods (red square in Fig. 1d) and
thus distinguishes between common and increasingly extreme floods
that may occur in river basins.

Rogger et al. (2012) investigated marked uprises (i.e., discontinu-
ities in the slope) of flood frequency curves, which they called step
changes, by leveraging information collected from field surveys in
two small alpine catchments to calibrate a distributed deterministic
rainfall-runoff model. They suggested that step changes occur when
a threshold of the catchment storage capacity is exceeded, and per-
formed a synthetic experiment (Rogger et al., 2013) to examine the
effect of catchment storage thresholds and combined multiple controls
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(e.g., the temporal variability of antecedent soil storage and the size of
the saturated regions) on the return period of the step change. They
also highlighted important implications of the presence or absence
of flood divides for estimation and design purposes, further stressing
the need for a robust method to identify their possible occurrence. In
fact, misidentifying the presence of flood divides may either lead to
overestimation of rare floods (if large recorded outliers are considered
in the analyses) or to their underestimation, in case events larger than
the flood divide were not yet recorded or are regarded as outliers.

Guo et al. (2014), Basso et al. (2016) instead linked different shapes
of flood frequency curves and a marked growth of the magnitude of the
rarer floods to the catchment water balance. The former justified these
features through the aridity index (i.e., the ratio between mean annual
potential evaporation and precipitation, Budyko (1974)), showing that
flood frequency curves characterized by increasing aridity index are
steeper. The latter explained them by means of the persistency index
(i.e., the ratio between mean catchment response time and runoff
frequency, Botter et al. (2013)) and highlighted that the concavity of
the flood frequency curve changes from downward to upward shifting
from persistent to erratic regimes, thus causing the emergence of flood
divides.

Smith et al. (2018) computed the ratio between the maximum flood
of record and the sample 10-year flood for thousands of gauges across
the USA, finding large values for a substantial amount of them. Differ-
ent flood-generating processes (Merz and Blöschl, 2003; Berghuijs et al.,
2014; Tarasova et al., 2020) or mixtures of flood event
types (Hirschboeck, 1987; Villarini and Smith, 2010; Smith et al., 2018)
were indicated by other studies as possible causes of these marked
increases of the magnitude of the rarer floods.

Finally, a rather common approach to study this phenomenon con-
sists in evaluating the shape parameter of Generalized Extreme Value
distributions fitted to observed annual maximum series (Farquharson
et al., 1992; Bernardara et al., 2008; Villarini and Smith, 2010; Smith
et al., 2018). Notwithstanding the drawbacks of such a parametric
approach applied in association with limited records of annual maxima,
these studies highlighted the ubiquitous occurrence of flood divides and
flood distributions characterized by thick upper tails, as indicated by
widespread positive values of the shape parameter. Moreover, Smith
et al. (2018) showed that the values of the shape parameter signifi-
cantly increase with longer data records. Their findings thus suggest
that uprises of flood frequency curves may be the norm rather than
rare conditions, pointing to the limited data record as the reason for
the latter belief.

Although former research hints at the ubiquitousness of flood di-
vides in flood frequency curves and provide indications of their possible
drivers, a quantitative methodology to identify flood divides, which
is robust to sampling uncertainty and tested in a large set of case
studies, is still lacking. The relevance of our study is thus twofold:
(i) we develop such a methodology for the detection of flood divides
and evaluate their emergence across the US and Germany, in a large
set of catchments with contrasting physio-climatic features; (ii) we
examine the reliability of a process-based stochastic framework for the
estimation of flood frequency curves to detect flood divides and infer
their occurrence, benchmarking its results against observations.

2. Methodology and data

2.1. The physically-based Extreme Value distribution of river flows

2.1.1. Theoretical framework
The PHysically-based Extreme Value (PHEV) distribution of river

flows is a parsimonious mechanistic–stochastic formulation of flood
frequency curves (Basso et al., 2016, 2021) that stems from a rigorous
mathematical description of catchment-scale daily soil moisture and
streamflow dynamics in river basins (Laio et al., 2001; Porporato et al.,
2

2004; Botter et al., 2007). In this framework, daily precipitation is
represented as a marked-Poisson process with frequency 𝜆𝑃 [𝑇 −1]
and exponentially-distributed depths with average value 𝛼 [𝐿]. Soil
moisture decreases due to evapotranspiration and is replenished by
precipitation events that eventually trigger runoff pulses when an upper
wetness threshold is crossed. These pulses, which feed water to a hydro-
logic storage, are also a Poisson process with frequency 𝜆 < 𝜆𝑃 [𝑇 −1]
and an exponential distribution of magnitudes with mean 𝛼 [𝐿]. A
non-linear (i.e., power-law) storage-discharge relation with parameters
𝑎 and 𝐾 epitomizes the hydrological response of the catchment and
encompasses the joint effect of different flow components (Brutsaert
and Nieber, 1977; Basso et al., 2015b).

The above-summarized mechanistic–stochastic description of runoff
generation processes allows for expressing the probability distributions
of daily flows (Botter et al., 2009) and peak flows (i.e., local flow
peaks occurring as a result of streamflow-producing rainfall events) as a
function of a few physically meaningful parameters (Basso et al., 2016).
It also enables characterizing hydrologic regimes according to their
typical streamflow dynamics, which are summarized by the persistency
index (Botter et al., 2013). This is defined as the ratio between runoff
frequency and the mean hydrograph recession rate, i.e., 𝜆

𝐾(𝛼𝜆)𝑎−1 (Basso
et al., 2016; Deal et al., 2018).

An erratic regime (lower values of the persistency index), which
is commonly found during dry seasons, very hot humid seasons with
intense evapotranspiration or in fast responding catchments, is char-
acterized by periods between the arrival of runoff-producing rainfall
events which are longer than the typical duration of flow pulses.
Conversely, a persistent regime (higher values of the persistency index),
typically occurring in cold-humid seasons and lowland catchments, is
characterized by frequent rainfall events and a rather constant water
supply to the catchment.

Considering that peak flows in a given reference period (e.g., a sea-
son) are Poisson distributed and postulating their independence yield
the probability distribution of flow maxima (i.e., maximum values in a
specified timespan). The return period is finally obtained as the inverse
of the exceedance cumulative probability of flow maxima, thus provid-
ing an expression of the flood frequency curve which reads (Basso et al.,
2016):

𝑇𝑟(𝑞) =
1

1 − 𝑒𝑥𝑝
[

−𝜆𝜏𝐷𝑗 (𝑞)
] (1)

where 𝜏 [T] is the duration in days of the reference period used in the
analyses; 𝐷𝑗 (𝑞) = ∫ ∞

𝑞 𝑝𝑗 (𝑞) 𝑑𝑞 is the exceedance cumulative probability
of peak flows; 𝑝𝑗 is the probability density function of peak flows,
𝑝𝑗 (𝑞) = 𝐶𝑞1−𝑎 exp( 𝜆𝑞1−𝑎

𝐾(1−𝑎) − 𝑞2−𝑎

𝛼𝐾(2−𝑎) ); 𝛼 and 𝜆 are the aforementioned
parameters describing Poisson-distributed runoff events, 𝑎 and 𝐾 are
the parameters of the power-law storage-discharge relation, and 𝐶 is a
normalization constant.

2.1.2. Parameter estimation
The four parameters of PHEV (𝛼, 𝜆, 𝑎, 𝐾) are rather straightforward

to estimate at the catchment scale. They are indeed directly derived
from the observed time series of precipitation and streamflow: 𝛼 is
computed as the mean daily rainfall depth in rainy days, while 𝜆 (fre-
quency of streamflow-producing rainfall) as the ratio between the long
term mean daily flow ⟨𝑞⟩ and 𝛼 (Botter et al., 2007). The parameters
of the power-law storage-discharge relation (i.e., the recession expo-
nent 𝑎 and coefficient 𝐾) are estimated through hydrograph recession
analysis (Brutsaert and Nieber, 1977) following the approach proposed
by Biswal and Marani (2010). Finally, the recession coefficient is not
directly used as input in Eq. (1), but it is replaced by its maximum likeli-
hood estimation on the observed seasonal flood frequency curve (Basso
et al., 2016).
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2.2. Identification of flood divides

To identify flood divides, we start from the method proposed
by Rogger et al. (2013): a flood divide is defined as the sharpest bend
of the flood frequency curve, here considered in terms of rescaled
streamflow maxima (i.e., seasonal maxima divided by the long term
mean daily flow, ⟨𝑞⟩) as a function of the return period, the latter
represented in logarithmic scale. We then develop a new methodology
dedicated to its identification from both empirical estimates of the flood
frequency curve obtained by means of Weibull plotting position and
models, such as PHEV.

The resulting approach, which can be employed without depending
on subjective evaluation, is detailed in the following.

1. The curvature of the flood frequency curve, of which we show an
example in Fig. 1, is computed as 𝑙𝑜𝑔𝑇 𝑟′′∕(1+𝑙𝑜𝑔𝑇 𝑟′2)(3∕2) (where
the apex indicates the derivation operation with respect to the
rescaled streamflow) for both the observations and PHEV. In the
former case, we use the method developed by Jianchun et al.
(1995) for computing derivatives in non-equally spaced points,
while for PHEV we employ the Python routine from the Scipy
library (misc.derivative), which uses a central difference formula
with spacing dx to compute the 𝑛𝑡ℎ derivative at a specified
point.

2. As the noise associated to computing the curvature on a discrete
and rather sparse set of points (seasonal maxima) might lead to
identification errors, a heuristic filter is applied on the curvature
calculated from observations: only points on the right-hand side
of the last value of the curvature exceeding the range ±𝜎 (where
𝜎 indicates the standard deviation of the curvature itself) are
considered (Fig. 1c).

3. The Mann–Whitney U-test (Mann and Whitney, 1947) is applied
on the values of the first derivatives on the left and right-hand
sides of each potential flood divide identified at point 2 to check
if their distributions are statistically different at a significant
level equals to 0.05 (in other words, if the slope of the curve
significantly differs between the left and right-hand side of the
flood divide); the effect size is then computed by means of the
Cohen’s d (Cohen, 1974) to evaluate if the magnitude of the
difference is relevant (Sullivan and Feinn, 2012). For PHEV, this
step is performed on a dense set of values, equally spaced with
an interval 𝛥q = 0.05 up to a value of rescaled streamflow equal
to 200, i.e., 200 times the long-term average streamflow. The
relative increment of the slope between the left and right-hand
side of a potential PHEV flood divide is also evaluated within
the observational range.

4. We finally identify as flood divide the point for which the 𝑝-
value of the Mann–Whitney test is the lowest, provided that the
Cohen’s d is greater than 0.4 (moderate effect size; (Gignac and
Szodorai, 2016; Lovakov and Agadullina, 2021)) and the slope
increment exceeds a value of 1%.

Fig. 1 visually exemplifies the application of the developed ap-
proach for flood divides detection to the flood frequency curve of the
Rott river at Kinning, Bavaria (ID: 18801005), in the summer season.
In Fig. 1a the flood frequency curve is represented with switched axes
(i.e., the logarithm of the return period is represented on the 𝑦-axis
whereas the rescaled seasonal maxima on the x-axis), as streamflow
is the independent variable in Eq. (1). The red square in Fig. 1a, d
represents the selected flood divide, i.e., the one associated to the
lowest 𝑝-value of the Mann–Whitney U-test applied to the distributions
of the first derivatives (Fig. 1b) and fulfilling the additional criterion
on the Cohen’s d. We also show points that are initially analyzed as
potential flood divides (i.e., all the points with a Mann–Whitney 𝑝-value
lower than 0.05, orange squares in Fig. 1a).
3

Fig. 1. Exemplary application of the proposed methodology to detect flood divides
to the Rott river at Kinning, Bavaria (ID: 18801005), in the summer season. (a)
Visualization of how the approach is actually applied, i.e., expressing the logarithm
of the return period as a function of the rescaled seasonal maxima (gray filled circles).
Potential flood divides (i.e., all the points with a 𝑝-value of the Mann–Whitney U-test
lower than 0.05) are represented by orange squares, while the selected one (i.e., the
one exhibiting the minimum 𝑝-value of the Mann–Whitney U-test and Cohen’s d greater
than 0.4) is depicted with a red square. (b) First derivative computed on observations.
(c) Curvature computed on observations, with the shaded area representing twice its
standard deviation. (d) Standard representation of the flood frequency curve, namely
observed maxima as a function of the logarithmic value of the return period (gray filled
circles). The red square indicates the selected flood divide, while the orange shaded
area represents the range of potential flood divides. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Datasets

We use daily rainfall and streamflow time series from the Model
Parameter Estimation Experiment dataset (MOPEX, data from 1948 to
2003) (Duan et al., 2005; Schaake et al., 2006) and from Germany
(1951–2013) (Tarasova et al., 2018). Streamflow is measured at the
gauging stations whose geographical coordinates are listed in Table
S1, whereas the corresponding rainfall records are spatially averaged
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Fig. 2. Select river basins (white filled circles) from the (A) MOPEX and (B) German datasets. The background of the maps represents 30-years annual precipitation normals
(1981–2010 for the US and 1991–2020 for Germany). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
values for the upstream drainage areas derived from gridded datasets.
We perform all analyses in a seasonal time frame (spring: March
to May; summer: June to August; autumn: September to November;
winter: December to February) to account for the seasonality of rainfall
and runoff (Allamano et al., 2011; Baratti et al., 2012). To assure that
PHEV suitably represents the key processes of streamflow generation in
the set of case studies, we only consider catchments with low human
impact, weak or absent inter-seasonal snow dynamics (Botter et al.,
2013; Wang and Hejazi, 2011) and hydrograph recession properties
which are independent of the peak flow (Basso et al., 2021). Similarly
to previous studies (Merz et al., 2020), we as well restrict our analysis
to cases for which the root mean square error (𝑅𝑀𝑆𝐸) between the
predicted and observed flood frequency curve is limited (i.e., lower
than 0.3), as a fairly accurate estimation of the flood frequency curve
is a precondition to investigate if PHEV is able to correctly identify
flood divides and whether their occurrence is affected by physio-
climatic catchment attributes. Figure S1 provides a summary of the
performance of PHEV (quantified by means of varied error metrics,
see Supplementary Material) in reproducing observed flood frequency
curves in the considered set of case studies. This selection yields a set
of 101 case studies (i.e., catchment-season combinations), divided into
23, 29, 23 and 26 cases respectively in the spring, summer, autumn
and winter seasons. The median length of the considered data series is
54 years (min: 34, max: 55) for the MOPEX and 58 years (min: 40, max:
63) for the German case studies. Their catchment areas vary between
43 and 9052 km2 (median: 865 km2). The locations of their outlets are
displayed in Fig. 2.

3. Results and discussion

We apply the methodology for the identification of flood divides
introduced in the previous section to each observed and analytic sea-
sonal flood frequency curve, thus allowing for evaluating the flood
divide detection of PHEV against observations, which we consider as
benchmark (Fig. 3). The bar plots in Fig. 3 show the percentages of
case studies for which a flood divide is identified from both PHEV
and the observational records (true positives, dark green color), those
which display a flood divide neither in the empirical nor in the analytic
flood frequency curves (true negatives, light green), the percentages of
cases where a flood divide is detected from the observations but not
from the analytical model (false negatives, red), and those where the
analytical model has foreseen the occurrence of a flood divide which
is not confirmed by the available observations (false positives, orange).
The existence of both true positives and true negatives emphasizes the
capability of PHEV to mimic varied observed shapes of flood frequency
curves (Basso et al., 2016) and to identify both the presence and the
absence of a flood divide.

The bar plots in Fig. 3a and 3b differ for the criteria applied in the
flood divide identification methodology. In Fig. 3a only the controls on
the 𝑝-value of the Mann–Whitney U-test mentioned in Section 2.2 are
4

considered, whereas the additional requirements on the effect size and
slope increment are as well used in Fig. 3b. True positives (dark green)
prevail in the summer (18 cases) and autumn (14 cases) seasons of
Fig. 3a, amounting to about 60% of the cases. False positives constitute
instead a sizable share of the cases in spring (12 cases) and winter
(21 cases). When more stringent requirements for the identification
of flood divides are used, by accounting for the mentioned additional
criteria, the percentage of true positives decreases (Fig. 3b, dark green;
respectively 3, 11, 12 and 1 cases in spring, summer, autumn and
winter). A few cases of those shifting category become true negatives
(for an overall number of 2, 3, 1 and 1 cases in spring, summer, autumn
and winter), indicating that the slope of the flood frequency curve
does not substantially increases on the right-hand side of the potential
flood divide, thus not representing a noteworthy hazard. Most of them
however become false positives (orange color in Fig. 3b; respectively
18, 15, 9 and 24 cases in spring, summer, autumn and winter) as
the identified changes of the slope of the observed flood frequency
curve are not substantial according to the limited amount of available
observations, whereas PHEV confirms the existence of a flood divide
thanks to its evaluation in an unlimited number of points. Consistent
results are also found when considering different significant levels for
the Mann–Whitney test: the strictest the level the highest the share
of cases shifting between true and false positives, which once again
points to the unfeasibility of detecting flood divides with confidence
from plain observations.

The predominance of false positives in spring (18 cases) and winter
(24 cases) (orange color in Fig. 3b) calls for further investigation of
their causes. We therefore hypothesize that PHEV, by leveraging the
embedded mechanistic description of hydro-climatic dynamics taking
place in watersheds and the information gained from analyzing daily
rainfall and streamflow series, might indicate the possible emergence of
flood divides that are not yet displayed by the observed flood frequency
curves. In fact, these empirical estimates are likely affected by small
sizes of the samples of large events (i.e., those on the right-hand side
of each potential flood divide, see Fig. 1a) and by the specific character
of catchments, which may have a more or less enhanced propensity to
exhibit extreme floods and thus display them in a limited data record.
We then perform the following experiment to test this hypothesis. We
consider the set of true positives (i.e., the 27 cases for which both
PHEV as well as the observed flood frequency curve show a flood
divide) and retain only maxima with return periods below 5 years
(see an explanatory example in Fig. 4a, where the maxima retained
are represented by gray filled circles with blue contours). In so doing,
we approximately discard in each case the largest ten points and their
corresponding years of occurrence. Thereby, fictitious flood frequency
curves only comprising maxima with smaller magnitudes (and return
periods) are created, thus reproducing the conditions we hypothesized
as possible reasons of the emergence of false positives. We then apply
the usual methodology for identifying flood divides on these fictitious
flood frequency curves and the corresponding shortened data records.
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Fig. 3. Performance of the PHysically-based Extreme Value (PHEV) distribution of river flows in the detection of flood divides when only the controls on the Mann–Whitney
-test are considered (see Section 2.2, panel a) and when the whole methodology for detecting flood divides is applied (see Section 2.2, panel b). Percentages are calculated on

he overall number of case studies, which amount to 23, 29, 23 and 26 cases respectively in the spring, summer, autumn and winter seasons. True positives (dark green color; 27
ases in panel b) and true negatives (light green; 7 cases) indicate coherence between PHEV and observations, i.e., flood divides are either detected or not from both PHEV and
he observed records. These constitute a large number of cases in summer (14 cases) and autumn (13 cases). False positives (orange; 66 cases) and false negatives (red; 1 case)
epresent the cases in which either PHEV detects a flood divide that was not identified by the observations or the observations display a flood divide which is not detected by
HEV. The indicated absolute numbers of positive and negative cases refer to the complete application of the methodology for detecting flood divides (i.e., panel b). The reasons
or the presence of false positives are further investigated in the study and clarified in the text and figures. (For interpretation of the references to color in this figure legend, the

eader is referred to the web version of this article.)

v

PHEV detects a true flood divide (i.e., true positives) in 81% of
he cases (22 case studies) even when the largest points are removed,
hereas the observations only in 40% (11 cases). The maps in Fig. 4b
nd 4c summarize this result: half circles are colored either in green,
f a flood divide is successfully detected from the shortened flood
requency curve, or in red in the opposite case. The left half of the
ircle depicts the detection capability of PHEV, while the right side
he results obtained from the observations. It can be easily seen that
ost left halves of the circles are colored in green and most of the right

nes are instead red, thus indicating a high success rate of PHEV and
significantly lower one of observations in inferring the emergence of

lood divides from shortened records. A similar result is obtained by
iscarding maxima with return period greater than 10 years (i.e., dis-
arding about five-six points instead of the highest ten), when PHEV
orrectly detects 85% of true flood divides (23 cases) in comparison
o a correct detection rate from observations of 60% (16 cases). The
utcome of this experiment strongly suggests that the detected false
ositives (orange color in Fig. 3) indeed arise because of the statistical
ncertainty of limited data records and the capability of PHEV to infer
he occurrence of flood divides from short series rather than by its
nability to correctly identify inflection points which were detected (or
ot) in the observed flood frequency curves.

A physical explanation of the reason why some observational se-
ies might not exhibit a flood divide which shall be expected is pro-
ided by considering typical streamflow dynamics occurring for distinct
iver flow regimes, here characterized by means of the persistency
ndex (Botter et al., 2013). When streamflow values weakly oscillate
round their mean (persistent regimes), the probability of occurrence
f relatively large flows is very low, and extreme events are unlikely
o be captured by short time series. On the contrary, erratic regimes
re composed of a sequence of high flows interspersed in between pro-
onged periods of low flows. Events which are several times (i.e., order
f magnitudes) higher than the average flow are thus more likely to
ccur in these regimes (Basso et al., 2015a). In the context of this study,
alse positives shall therefore mostly occur for persistent regimes, as
uch large events enabling detection of flood divides from empirical
lood frequency curves are less likely to have been observed during the
vailable data record.

Fig. 5a displays the percentages of true positives (dark green color;
rom left to right: 9, 10, 6, 2 and 0 cases), true negatives (light green;
espectively 5, 1, 0, 0, 1 cases), false negatives (red; 1, 0, 0, 0, 0 cases)
5

and false positives (orange; from left to right: 6, 9, 14, 18 and 19 cases)
for five ranges of the persistency index set so as to have an equal
number of values (∼20) per bin. The number of false positives con-
sistently increases with the persistency index, thus corroborating the
above reasoning. No clear patterns are instead observed with, e.g., the
drainage area and the average rainfall magnitude in the catchment
(Figure S3), which are sometimes regarded as possible drivers of a
marked increase of the magnitude of the rarer floods (Gaume, 2006;
Villarini and Smith, 2010).

A recent review of the current scientific knowledge (Merz et al.,
2022) suggests explanations for these results. It signals an unlikely
direct role of catchment size in determining tail behaviors of flood
distributions, as increasing drainage areas entail both spatial aggrega-
tion (which may cause lighter tails), and shifts of dominant processes
(e.g., different precipitation types and runoff generation mechanisms)
which may lead in the opposite direction. It also reports robust evi-
dences against a dominant role of rainfall characteristics for the emer-
gence of heavy-tailed flood distributions, as runoff generation processes
strongly modulate the hydrologic response. On the contrary, the avail-
able literature emphasizes the role of non-linear hydrological responses
and the catchment water balance for the emergence of heavy tails.
These are the two key processes described by PHEV and summarized
by the persistency index, which thus arises as a pivotal indicator of the
possibility to detect flood divides from data records.

To further highlight the relation between typical river flow dy-
namics recapped in the persistency index and the occurrence of false
positives we compare in Fig. 5b the cumulative distributions of the
persistency index for true cases (green) and false positives (orange).
The distributions clearly differ. True cases feature more erratic regimes
which facilitate their identification from data records, whereas false
positives mostly occur for persistent regimes. This qualitative evalua-
tion is validated by applying the 2-sample Kolmogorov–Smirnov test,
which evaluates if two samples come from the same distribution (null-
hypothesis), to the sets of true and false positives (the same is obtained
by comparing true negatives and false positives). We can reject the
null-hypothesis at the 0.01 significance level, meaning that the two
samples are drawn from different distributions and false positives are
significantly more likely to occur for persistent regimes. The same
cannot be proved for the cumulative distributions of catchment area (𝑝-
alue = 0.44) and average rainfall magnitude (𝑝-value = 0.34) for the
sets of true and false positives. Remarkably, the seasons characterized
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Fig. 4. Visual explanation and results of an experiment aimed at testing hypotheses on the emergence of false positives. (a) Gray dots with black (blue) contour represent the
complete (shortened, until a return period of 5 years) observed seasonal maxima series of the Wörnitz river at Harburg, Bayern (ID:11809009), in the summer season. The solid
black (blue) line displays the analytic flood frequency curve (i.e., PHEV) whose parameters are estimated from the complete (shortened) time series. The red (yellow) square
indicates the flood divide detected from the observations (by PHEV) using the complete series, while the corresponding crosses (the red one is not visible in the plot as no flood
divide was detected after shortening the observations) represent the observed and analytic flood divides detected on the shortened flood frequency curve. (b–c) Locations of the
true positives in the US (panel b) and Germany (panel c). The left (right) half of the circles represent PHEV (observations) ability to detect a flood divide when the shortened
flood frequency curves (i.e., maxima characterized by return period below 5 years) are used. The green (red) colored halves indicate successful (failing) detection. Remarkably,
most of the left halves are green (PHEV detects true flood divides even from the shortened series in the majority of the cases), whereas most of the right ones are red (flood
divides are not always identified from observations when the shortened records are used). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
by the larger portion of false positives are spring and winter, during
which regimes tend to be more persistent.

The physical explanation provided here of the different telling
power of streamflow data for rivers characterized by distinctively dif-
ferent streamflow dynamics agrees with the results of previous re-
search. For example, Botter et al. (2013) showed less variable stream-
flow distributions across years in erratic regimes compared to persistent
ones, which determines higher representativeness of their estimates in
the former case for a given length of the data record. Smith et al.
(2018) also demonstrated that upper tail ratios grow with the length
of data and, for a given data length, are larger (i.e., flood divides are
more often identified) in arid and semiarid regions than in humid ones.
Their results jointly suggest that, given similarly long data records,
the typical (erratic) flow dynamics of drier areas enable more reliable
characterization of the whole range of values possibly spanned by
streamflow and of the presence or absence of flood divides according
to the physical explanation provided above.

4. Concluding remarks

In this work we examine the occurrence of marked uprises of flood
frequency curves (termed flood divides), which are pivotal for a correct
estimation of river flood hazard. We develop a robust methodology to
identify them from observational records and models, and evaluate the
capability of the PHysically-based Extreme Value distribution of river
flows (PHEV) to reliably detect flood divides.
6

Results show that PHEV is consistently able to recognize the pres-
ence and absence of flood divides in a large set of case studies from
the US and Germany. Possible reasons for the occurrence of a sizeable
number of false positives are investigated by accounting for both the
statistical uncertainty of relatively short observational records and the
typical hydro-climatic variability of different river basins, which affects
the information content of these limited data series. To this end, we
perform a controlled experiment in which we remove the highest flow
maxima in the flood frequency curves of the true positive cases and
repeat the flood divide detection analysis on the shorter series, showing
that PHEV can foresee the emergence of true flood divides in more
than 80% of the cases even if the shortened observations do not display
them. The result supports claims of the dependability of flood divides
initially classified as false positives. An investigation of the intrinsic
dynamics of streamflows in the set of true and false positives further
elucidates the issue. False positives are indeed preferentially found for
more persistent regimes (87% of the false positives have persistency
index above two, as opposed to only 11% of true positives; the overall
number of cases with persistency index above two is 55) which, by
their nature, rarely exhibit large extreme flow values. The limited
length of the available observed time series might be thus constraining
the possibility to observe expected flood divides, analogously to what
occurs when we artificially reduce the size of the observational sample.

The present analysis, performed on a wide set of catchments charac-
terized by different hydroclimatic features, reveals PHEV as a reliable
tool to identify and foresee the occurrence of flood divides and con-
sequently unveil the propensity of rivers to large floods. The method
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Fig. 5. (a) Performance of the PHysically-based Extreme Value (PHEV) distribution of river flows in the detection of flood divides as a function of the persistency index. Ranges
(whose boundaries are reported in the x-axis) were set so as to have an equal number of values (∼20) per bin. (b) Empirical cumulative distribution functions of the persistency
index for true positive (dark green), true negative (light green) and false positive (orange) cases. The distributions of true versus false cases are significantly different in a statistical
sense (the 𝑝-value of the 2-samples Kolmogorov–Smirnov test is lower than 0.01.). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
is especially relevant in data scarce conditions, although limitations
linked to the domain of applicability of this tools exist and have been
recalled in this work. The study lays the foundations for a better
comprehension of climate and landscape controls of observed marked
rises of the magnitude of the rarer floods, which is the subject of
ongoing research.
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