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Bacterial bioindicators enable biological status
classification along the continental Danube river
Laurent Fontaine1, Lorenzo Pin1,2, Domenico Savio3,4,5, Nikolai Friberg2,6,7, Alexander K. T. Kirschner3,4,8,

Andreas H. Farnleitner3,4,5 & Alexander Eiler 1,9✉

Despite the importance of bacteria in aquatic ecosystems and their predictable diversity

patterns across space and time, biomonitoring tools for status assessment relying on these

organisms are widely lacking. This is partly due to insufficient data and models to identify

reliable microbial predictors. Here, we show metabarcoding in combination with multivariate

statistics and machine learning allows to identify bacterial bioindicators for existing biological

status classification systems. Bacterial beta-diversity dynamics follow environmental gra-

dients and the observed associations highlight potential bioindicators for ecological out-

comes. Spatio-temporal links spanning the microbial communities along the river allow

accurate prediction of downstream biological status from upstream information. Network

analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Aci-

netobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa,

which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators

reveals mutually exclusive taxa, which allow accurate biological status modeling using as few

as 2–3 amplicon sequence variants. As such our models show that using a few bacterial

amplicon sequence variants from globally distributed genera allows for biological status

assessment along river systems.
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In recent decades, the conservation and restoration of endan-
gered river ecosystems have become pivotal around the globe.
In Europe, the evaluation of ecological status relies on several

indicators, including physical, chemical, and biological para-
meters. Biological indicators encompass different components of
the communities living in freshwater ecosystems: fish, macro-
invertebrates, aquatic flora including phytoplankton, phyto-
benthos and macrophytes. Little attention has been given so far to
prokaryotes1–3, with the exception of health-related water quality
assessment, such as for bathing or drinking water4–7.

Prokaryotes, due to their small size and high surface-to-volume
ratio, are extremely sensitive to environmental changes, including
variations in nutrients or pollutants even at very low
concentrations8. This ability makes them perfect candidates as
bioindicators and early warning sentinels, able to quickly respond
to any sign of stress in the environment9. The need for biological
indices based on prokaryotes has been stressed several times by
different authors and multiple approaches have been proposed to
introduce these communities in the current biomonitoring net-
works for freshwater as well as marine environments10.

First attempts at identifying bacterial taxa suitable as bioindi-
cators for biological status characterization were carried out by
Fortunato et al.11 in the Columbia River and its estuary. They
were able to identify multiple taxa of bacterioplankton commu-
nities specific to various seasons and habitat types. Aylagas et al.12

went a step further and used a biological status index based on
benthic macroinvertebrates as a methodological basis to develop a
comparable index using bacterial taxa from 16S rRNA amplicon
sequencing. Bacterial taxa were divided into two ecological groups
according to their positive or negative association with both
organic and inorganic pollution inputs. The microgAMBI index
they developed is based on the relative abundance of the taxa
associated with each of the two ecological groups. In addition, this
study revealed a significant correlation between the newly
developed bacterial index and the traditional classification
method based on macroinvertebrates, showing better perfor-
mance of the former in some cases. This emphasized that bacteria
and ecological status can be linked and that bacteria-based indices
can be valid proxies for environmental impact assessment and
water quality classification in coastal areas.

In a recent study, Cordier et al.10 proposed combining envir-
onmental genomics and machine learning tools to develop reli-
able ecological quality status assessment routines. They suggested
using supervised machine learning algorithms, which require a
discrete variable (such as the ones for ecological quality status
already in use) derived by continuous values of biological indi-
cators obtained by morphological taxa identification. Decision
tree learning avoids the black box problem associated with other
algorithms as it allows to inspect individual trees of models and
thus gain an understanding of the dynamics of relevant taxa. By
assessing metabarcoding and morphological taxa identification at
the same time, a predictive biomonitoring model could be built by
training it on datasets with known ecological status classification.
Firstly, such an approach could overcome several issues related to
the lack of a taxonomic framework and the need for detailed
taxonomic databases. These issues are solved by the model during
the training phase since the ecological role of the taxa (for
example operational taxonomic units or amplicon sequence
variants) and their association with the whole community are
automatically separated from the background noise10. Secondly,
genomic data can be easily interpreted by managers without
discrepancies typically associated with morpho-taxonomy.
Therefore, data collection and processing could be fully auto-
mated. Thirdly, this molecular approach is also cost-effective and
could be scaled up in time and space for consistent biomonitoring
programs across countries and years.

In our work, we integrate these approaches using decision tree
learning algorithms to detect potential bacterial bioindicators
among the planktonic community of the Danube River from its
source to the mouth. Here we seek to establish a method for
identifying reliable bacterial bioindicators for the characterization
and prediction of ecological patterns such as ecological status and
water quality of the Danube River. We hypothesize the mobility
of organisms within the river makes upstream community com-
position informative for downstream ecological outcomes such as
ecological status from Saprobic index and chlorophyll a con-
centration. In addition, we applied multivariate statistics to detect
suitable bioindicators based on the prevalence and variance of
prokaryotic taxa3 associated with environmental drivers, as a
snap-shot approach not accounting for the spatial dependency of
the sites. Finally, we compared the results from the snap-shot and
spatio-temporal approaches to evaluate the efficiency and trans-
ferability of bacterial bioindicators for the assessment of river
ecosystem’s biological status as part of conservation and
restoration efforts.

Results
Prevalence/variance analysis of the microbial community
structure. The results from the prevalence/variance analysis on
amplicon sequence variant (ASV) relative abundance data
revealed that the six most relevant phyla were, in this order,
Actinobacteriota, Bacteroidota, Verrucomicrobiota, Proteo-
bacteria, Cyanobacteria, and Planctomycetota (Fig. 1). Actino-
bacteriota for example significantly increased in relative
abundance locally in the lower parts of the river. The dbRDA
revealed a positive relationship between increased Actinobacter-
iota contribution and decreasing values of pH and water tem-
peratures that characterize river reaches closer to the mouth. On
the other hand, Bacteroidota had a higher contribution in the
headwaters which appear to be correlated to higher loads of
nitrogen, pH values and conductivity. Other phyla also showing
high variances such as Verrucomicrobiota and Proteobacteria
exhibited close associations to environmental parameters such as
chlorophyll a concentration, high pH, and distance to river
mouth, which itself was linked to increasing nutrient loads
towards the upstream sites.

Accordingly, taxa with indicator potential for the assessment of
the biological status could also be identified at lower taxonomic
levels (i.e., class, family and genus level). At genus level (Fig. 2),
the top six candidate bioindicators were: hgcI_clade, CL500-29
marine group, Flavobacterium, Limnohabitans, Candidatus_-
Methylopumilus, and Sediminibacterium. These dbRDA results
emphasize a differentiation of the bacterial community structure
can be related to the succession of habitats along the river system
using high (phylum) to low (genus) taxonomic resolution.

To investigate the non-linearity and suitability of bacterial
beta-diversity for classification we performed modeling using
extreme gradient boosting (XGboost). The model for pairwise
bacterial community composition Bray–Curtis dissimilarities
along the chlorophyll a gradient displayed clear non-linear
patterns (Fig. 3) with an R-squared value of 0.32. We identified
thresholds, where community composition changed more
extensively than on average, at chlorophyll a concentrations of
for example 1, 2.5, and 5.5 mg/l.

Spatio-temporal identification of bacterial bioindicators. The
spatio-temporal approach identified several combinations of
ASVs as good predictors for both water quality classification
(according to the Saprobic Index) and chlorophyll a concentra-
tion. We focused the network analysis on the most informative
ASVs as defined by a threshold of the 95th percentile in terms of
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occurrence in the predictive model outputs. As shown in Fig. 4,
these ASVs formed a connected co-exclusion network. Although
some of the ASVs seemed to be better predictors than others,
none turned out to be indispensable to obtain the most accurate
predictions. ASVs found to be top predictors could be assembled
in combinations of two or three ASVs yielding the highest pos-
sible accuracy. The simplest predictive models yielding perfect
accuracy were obtained with a Fluviicola representative paired
with either an Acinetobacter or a Flavobacterium. Rhodoluna
(class Actinobacteriia) and Flavobacterium (class Bacteroidia)
were identified as the most important taxa, by frequency of
occurrence, in terms of information content for biological status
prediction. The other six of the 8 most informative ASVs
belonged to CL500-29 marine group (class Acidimicrobiia),
Alterythrobacter (class Alphaproteobacteria), MWH−UniP1
aquatic group (class Gammaproteobacteria) and two belonged to
Acinetobacter (class Gammaproteobacteria).

A total of 168 ASVs in various combinations were found to
yield perfectly accurate models for biological status classification,
whereas 25 were present in the best model for chlorophyll a. The
majority of the ASVs belonged to the phylum of Proteobacteria,
with the classes of Gammaproteobacteria and Alphaproteobacteria
being most abundant. Bacteria affiliated with class Bacteroidia
were the second most relevant class by the number of ASVs
identified as good predictors, followed by class Actinobacteria. As
highlighted in Fig. 5, 20 ASVs affiliated with four bacterial classes
yielded accurate predictions for both biological status classifica-
tion and eutrophication, with most of them affiliated with the
class of Gammaproteobacteria. One of these, an Acinetobacter
representative, is also listed among the top predictors suggested

by the network analysis. Class Bacteroidia was the second most
important class in terms of the number of ASVs being good
predictors for both biological status classification and chlorophyll
a concentration, followed by Verrucomicrobiae and only one ASV
belonging to class Bacilli. Five ASVs belonging to the Actino-
bacteria were identified as good predictors only for chlorophyll a
concentration.

The predictive accuracy of the models was unequal across the
different transects of the river for chlorophyll a. While the models
for only the center transect yielded an R squared of 0.98, the
global R squared for all three transects was 0.86. In contrast, the
accuracy of the best predictive models for water quality
classification was always 100% for the three transects (left, right
and center observations).

Discussion
This study highlights the potential of the identification of bac-
terial bioindicators for assessing the biological status of river
ecosystems from bacterial metabarcoding data, despite metho-
dological constraints such as copy number variations13, PCR
biases14, the compositional character of the sequencing data15 as
well as other limitations16. Both the prevalence/variance and
spatio-temporal approaches used in this study yielded compar-
able results in terms of candidate bacterial bioindicators, showing
that dominant bacterial taxa can be ecologically informative. As
such both approaches could complement and expand the cur-
rently implemented morphology-based methods to produce
ecological quality assessment, but in a faster and more cost-
effective way. The spatio-temporal approach is a fully data-driven
approach classification system and can be iteratively updated,
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Fig. 1 Visualization of the analysis on the prevalence and variance for most relevant bacterial phyla for the Danube River. a Dynamics of the phyla
among all the sampling sites. Samples are arranged from left (upstream) to right (downstream), with increasing distance from the source. b Bacterial phyla
with the highest prevalence among the sampling sites and highest variance; the six colored dots are the taxa most suitable as biological indicators
(highlighted in the ellipses) given their broad presence and wide variance across different environments. c The RDA shows the relationships of each of the
6 identified phyla with the environmental drivers. This provides the basis to link the dynamics of individual phyla with environmental properties; i.e.,
Actinobacteria contribute more to the community at the river mouth while Bacteriodota at the source and Verrucomicrobia increase in relative abundance
with chlorophyll-a concentrations. Similar analyses on bacterial classes and families are presented in Supplementary Figs. 4 and 5.
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which can unlock the disruptive potential of metabarcoding and
machine learning for biomonitoring. Samples from routine
monitoring can in real-time complement the training data and
further improve model predictions, and in the long run cover
most of the possible environmental condition space.

Potential future improvements to our approach include human
interpretability, and facilitating understanding of the trained
models. This is crucial for a smooth transition to machine
learning approaches for complex decision-making problems17.
There are now multiple tools available that allow to explain the
predictions, by identifying the features of the data that contribute
to a given prediction18. Such approaches will further allow biol-
ogists and ecologists to evaluate and control model development,
without falling into the caveats of machine learning10.

By using the spatio-temporal approach, accurate modeling of
biological status and chlorophyll a concentration can be achieved
based on only small sets of ASVs, provided they have high pre-
dictive power and are complementary in terms of information
content. That accurate biological status modeling can rely on as
few as 2–3 ASVs opens opportunities for various approaches to
bioindicator identification. These include on-site identification
systems using biosensors such as ecogenomic sensors or small
microfluidic lab-on-chip devices that could target identified
bioindicators for general ecological status classification. Point of
care and real-time sensing devices could unlock the real potential
of microbes in current biomonitoring networks and biodiversity
forecasting as already seen in weather forecasting.

The prevalence/variance analysis at class and genus level
revealed several taxa affiliated with the dominant phylum of
Actinobacteriota to be the most informative for changes in

environmental properties. The Actinobacteriota phylum embraces
taxa typically occurring in several freshwater environments19 and
holds a central role in the heterotrophic biogeochemical processes
within river ecosystems20. They seem to be strongly influenced by
pH and nutrient concentrations, which often negatively affect
their abundances due to their low growth rates19,21–23 and the
results from our analysis confirm their environmental pre-
ferences. Their higher abundance in the lower reaches of the
Danube River may be related to the lower nutrient concentrations
and organic matter content as a result of dilution effects, while
their lower abundances in the upstream river reaches might
originate from the negative association between suspended par-
ticles and this taxon11,24,25.

When focusing on the axes of the RDA visualization (Figs. 1
and 2), Bacteroidota were opposing this trend and were more
related to the upper river reaches with higher nutrient inputs,
conductivity, and strong dependence on nearby forests and
groundwater sources26. Flavobacterium (class Bacteroidia) was
the third important genus to be highlighted from the prevalence/
variance analysis with the highest abundances in the upstream
river reaches, thus showing a preference for more eutrophic
environments. The abundance pattern for this phylum is likely
related to the prevalent inputs of recalcitrant organic matter from
the riparian zone and forests. From the literature, the headwater
microbial community likely has its main source in the soil and
groundwater communities drifting into the upper reaches of the
Danube River26,27. Bacteroidota already previously have been
shown to be good indicators for anthropogenic pollution and
impacts from agriculture on freshwater ecosystems28. Real-time
qPCR is usually used to identify gene markers related to this
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Fig. 2 Visualization of the analysis on the prevalence and variance for the most relevant bacterial genera for the Danube River. a Dynamics of the
genera among all the sampling sites. Samples are arranged from left (upstream) to right (downstream), with increasing distance from the source.
b Bacterial genera with highest prevalence among the sampling sites and highest variance; the 15 colored dots are the taxa most suitable as biological
indicators (highlighted in the ellipses) given their broad presence and wide variance across different environments. c The RDA shows the relationships of
each of the 15 identified genera with the environmental drivers. This provides the basis to link the dynamics of individual genera with environmental
properties; i.e., Canditatus Methylopumilus contribute more to the community at the river mouth while Limnohabitans at the source and Flavobacterium spp.
increase in relative abundance with pH. Similar analyses on bacterial classes and families are presented in Supplementary Figs. 4 and 5.
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taxon within river systems impacted by wastewater treatment
plant effluents and in aquaculture systems, showing Bacteroidota
to be reliable in determining the degree of pollution29–33. In our
study, taxa belonging to the class Bacteroidota were clearly related
to the biological status of the Danube, further confirming their
potential relevance for biomonitoring in river ecosystems.

Proteobacteria were another group highlighted as bioindicators
by the variance/prevalence analysis, with the genus Limnohabi-
tans—a representative of the class Gammaproteobacteria—

identified as an indicator for eutrophic conditions. Other mem-
bers of the class of Gammaproteobacteria, such as E. coli are
important and sensitive indicators for fecal pollution in
aquatic ecosystems and water resources. Their numbers are tra-
ditionally surveyed by standardized culture-based enumeration
methods5,34. Very interestingly, Cyanobacteria had relatively low
abundances in river sections characterized by higher chlorophyll
a concentration. This pattern may seem counterintuitive but is
most likely related to green algae and diatom abundances in the
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Fig. 3 Threshold analysis for microbial beta diversity (Bray–Curtis dissimilarities) along the chlorophyll a gradient. The color scale represents
Bray–Curtis dissimilarity values computed between sites. The axes stand for chlorophyll a concentration (mg L−1) at each site. In (a), the observed beta
diversity patterns are presented along the chlorophyll a gradient, as modeled using XGboost. In (b), a hypothetical relationship is represented where
dissimilarity between communities increases linearly as a function of the difference in chlorophyll a between sites. The mean value of the response surface
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diagonal and then follow a line of points further up on the chlorophyll a axis. Here, a ridge indicates a chlorophyll a concentration to be a likely threshold
from which the shift in bacterial community composition is greater than average. In the same manner, a valley indicates a chlorophyll a concentration likely
located on an interval of the chlorophyll-a gradient along which bacterial communities do not shift substantially. More details on the XGboost approach and
its interpretation are given in Fontaine et al.57.
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Fig. 4 Network analysis results for the most frequent ASVs returned by the spatio-temporal approach yielding perfectly accurate water quality
classification. Colors represent the respective bacterial classes to which the ASVs belong. a Co-occurrence network, node diameter represents the number
of occurrences of each taxon in the best models, while the thickness of the connecting lines represent the number of co-occurrences of ASV pairs.
b Co-exclusion network. Links represent taxa that never occurred together in a same model.
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phytoplankton community, which had a greater impact on the
chlorophyll a concentrations compared to their bacterial
counterparts35.

From both approaches implemented in this study, it seems that
ASVs belonging to the dominant taxa in the bacterial community
such as Actinobacteriota, with the genus Rhodoluna in particular,
Bacteroidota with particularly the genus Flavobacterium as well as
Proteobacteria are also among the best indicators for shifts in the
biological status of water quality in the Danube River. This
finding aligns with the results from Fortunato et al.11, where
among the microbial communities from three different environ-
ments embracing a salinity gradient, the best indicators for
changes in the environmental drivers were among the most
abundant taxa.

Although the spatio-temporal approach identified multiple
combinations of ASVs yielding accurate predictions, many fre-
quently appearing ASVs never occurred together in any given
model. It can be assumed these ASVs do not co-occur in models
because they hold redundant information content. The co-exclusion
network (Fig. 4) allows for the identification of redundancies in
information content among the most informative ASVs. These
results from the network analyses suggest that there are no truly
best nor indispensable bacterial taxa yielding information on the
biological status and chlorophyll a concentration. Rather, there is a
certain amount of information required to get accurate models
which is shared across multiple taxa with various degrees of overlap.

While functional information on bacterial communities was
not available in this study, it is conceivable that ecological

function and information content are linked. Redundant ASVs
ought to be taxa occupying similar ecological niches albeit
without experiencing competitive exclusion. Redundancy, and as
such overlap in ecological information content, is likely to
increase with phylogenetic relatedness among taxa, as visualized
by a larger number of connections among closely related taxa in
the co-exclusion network. Among the best predictors, repre-
sentatives of same classes showed higher redundancy relation-
ships compared to taxa belonging to different phyla (Fig. 5). This
has been shown in a previous study where functional coherence
among closely related taxa ranged from low (species) to high
(phylum) taxonomic levels36. At the same time, bacteria can
belong to different ecological groups while being taxonomically
distinct at the level of a single nucleotide in a 16S rRNA tag37.

Functional coherence can be obscured within taxonomic
datasets by gene degeneracy and horizontal gene transfer. Yet,
studies comparing bioassessment performances of different
taxonomic levels showed that some higher taxa (in particular
genus level) might be relatively precise and efficient compared to
species level in the eukaryotes38,39. Others emphasized the
advantage of mixed taxonomic levels to adapt the taxonomic
detail to the information content for each clade40. Redundant
ASVs belonging to the same high taxonomic level as identified in
our study confirm the potential for high information content at
high taxonomic levels. Furthermore, these taxonomic groups may
contain bioindicators of high information content across a wide
range of river systems even though the exact same ASVs as
identified in our study are not present.
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Fig. 5 Phylogenetic analysis of the bioindicator taxa identified for the best predictive models for biological status classification and eutrophication
(chlorophyll a concentration). Colors represent bacterial classes while symbols represent the variable for which an ASV was identified as a predictor. The
horizontal position of nodes in the dendrogram indicates at which taxonomic level they occur, marked with dotted lines from Kingdom to genus. The
histogram represents the relative frequency of each ASV’s occurrence in model outputs.
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In order to identify the true nature of the signal behind
informational redundancy between taxa, it can be argued that the
entire genomic information must be obtained of microbial
communities. This ideal case of having access to complete
genomic information would allow for identifying shared func-
tional traits and more generally partitioning the entire informa-
tion content into discrete components. While the latter is
currently unrealistic, one can begin the search for ideal bioindi-
cators with a hypothesis that clusters of orthologous groups of
genes ought to be superior to 16S rRNA ASVs. Yet, functional
genes on their own may not necessarily turn out to be a unit of
ecological information as they can be degenerate or part of
incomplete metabolic pathways.

The community dynamics shown in our study confirm the
findings of previous bacterioplankton surveys in other river
ecosystems41–43 as well as from the Danube River itself26. It
seems that even across different river ecosystems around the
globe, the bacterioplankton succession follows similar trajectories,
with upstream and downstream communities being quite differ-
ent and strictly related to the water residence time43. As hypo-
thesized by Read et al.43, upstream river reaches could be
characterized by fast growing bacterial taxa, r-strategists capable
of processing the resources; these would be the Bacteroidota.
While on the other hand, when the river becomes larger, the
influence from the riparian zone is lower and nutrient availability
is reduced due to dilution effect and reduced bioavailability of
recalcitrant carbon sources; k-strategist organisms such as the
Actinobacteriota would prevail. This recurring pattern of micro-
bial succession suggests spatio-temporal predictive modeling for
all types of biological and ecological status assessment is applic-
able to river ecosystems sharing a similar bacterioplankton
composition.

Microbial community assembly across gradients may follow
relationship patterns ranging from broadly linear to clear-cut
non-linear. It thus raises the question of the nature of such
relationships in this study and how to model them in a way that is
coherent with natural patterns. When relationships are of linear
type, one should model a continuous response variable as it
avoids unnecessary loss of information from discretizing a gra-
dient into classes. Likewise, pronounced non-linearity is fertile
ground for a classification approach.

In our study, the occurrence of abrupt and below-average rates
of change in microbial community composition along the
chlorophyll a gradient indicates bacterial communities tend to be
somewhat homogeneous along certain river sections along the
flow path and change markedly beyond specific thresholds. For
example, the last clear shift occurs between 5 and 6 mg of
chlorophyll a per liter, after which the bacterial community rate
of change remains roughly below average until the end of the
gradient (Fig. 3). Concentrations of 6 mg chlorophyll a/l and
above can be construed as the natural range corresponding to
eutrophic waters. The non-linear relationship between bacter-
ioplankton community composition along the chlorophyll a
gradient supports a general biological classification approach
albeit leaving unanswered how many natural classes the latter
possesses and if the reference Saprobic Index classes overlap
natural ones.

The threshold analysis treated observations as independent,
whereas they are linked in space and time, meaning discrepancies
in community assembly reaction time between primary producers
and the rest of the microbial community may occur as water
masses travel and conditions change faster than equilibrium can
be reached. In cases of merging tributaries, water masses may
initially flow side-by-side and mix thoroughly only after many
kilometers44. Our results from the spatio-temporal approach
regarding chlorophyll a point in this direction. This laminar vs

mixing duality is reflected in higher model accuracy for the
midstream transect and must be considered when creating design
matrices. Left, right and midstream observations should thus be
treated as separate spatial series in terms of observation order.
Yet, overall accuracy is greater when integrating distinct time
series into one model rather than processing each separately. To
achieve accuracies for the left and right transects that are com-
parable to the midstream, it is conceivable that the values used for
lag steps and scaling at tributary merging locations may have to
come from upstream sites of the tributary itself rather than the
main river.

To verify if bacterial indicators are robust for biological
status prediction, one would need to test whether the clades
underlying given ecological processes in a river system apply in
the same fashion to other rivers and across seasons. To uncover
the suitability of candidate ASVs highlighted in this study as
well as the general applicability of variance-based and spatio-
temporal ASV screening methods, extensive training data is
required from multiple river systems in order to develop
general and robust classification systems for environmental
assessment based on bacterial data. There is also a need for
harmonization of sampling protocols, DNA library preparation,
sequence data generation, and downstream bioinformatics
processing to achieve reproducible biological status assessment
across river systems.

Methods
Study area. The Danube River spans 2780 km, from its source in
the Black Forest in Germany from whence it flows across ten
different countries (Germany, Austria, Slovakia, Hungary, Croa-
tia, Serbia, Bulgaria, Romania, Moldova and Ukraine), ending its
course in a delta on the Black Sea. Its catchment area covers
801,500 km2 and is populated by almost 81 million inhabitants45.
The water from the Danube River serves industries, agriculture
and people as drinking water supply and recreational area, as well
as a transportation route connecting several countries30.

Every six years since 2001, the Joint Danube Survey (JDS) has
been organized by the International Commission for the
Protection of the Danube River (ICPDR)30,45,46. As an extensive
survey of 2600 km of the Danube River (Supplementary Fig. 1),
the JDS is one of the largest international scientific expeditions,
aiming to collect data on the river hydro-morphology, dynamics
of several biological communities, water physico-chemical
parameters, pollutants, and more.

Water samples for the microbial community were collected by
hand from the epilimnion in 1 L flasks, at the same time as the
physico-chemical parameters of the water were also measured
with hand probes. Macroinvertebrates samplings were performed
using a Multi Habitat Sampling approach47, where different parts
of the riverbed were disturbed, and the macroinvertebrates were
collected with a net. Left and right sides of the river, together with
its center, were sampled at 60 locations.

All data, sampling methods, as well as analytical methods, are
publicly available via the official website of the International
Commission for the Protection of the Danube River (ICPDR;
http://www.icpdr.org/wq-db/) and the final scientific report48.
Selected data from JDS3 (2013) were published previously in
several studies30,35.

Ecological status classification compliant with the Water
Framework Directive was performed from JDS3 data collected
for some of the biological communities analyzed along the river,
among which macroinvertebrates, macrophytes, fish, and phyto-
plankton. Different biological classification systems are used by
different countries and intercalibrating the different methods
remains challenging48. The Saprobic Index, based on benthic
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macroinvertebrate communities, is one of the best-established
classification systems to assess biological status in compliance with
the WFD and is mainly used to assess organic pollution. This was
the only classification system used consistently throughout the
various countries along the Danube River and was therefore used
as the reference biological classification system in our study.

DNA extraction and 16S rRNA gene amplicon library pre-
paration. Genomic DNA was extracted using a slightly modified
protocol of a previously published phenol-chloroform and bead
beating-based procedure49 using isopropanol instead of poly-
ethylene glycol for DNA precipitation50. Total DNA concentra-
tion was assessed applying the Quant-iT™ PicoGreen® dsDNA
Assay Kit (Life Technologies Corporation, USA) and 16S rRNA
gene concentrations in the DNA extracts were quantified using
domain-specific quantitative PCR where reactions contained
2.5 μL of 1:4 and 1:16 diluted DNA extract as the template, 0.2 μM
of primers 8F and 338 targeting the V1–V2 region of most bac-
terial 16S rRNA genes and iQ SYBR Green Supermix (Bio-Rad
Laboratories, Hercules, USA)26. DNA extracts were normalized
with regard to 16S rRNA gene concentrations in order to use
standardized numbers of bacterial 16S rRNA gene templates for
amplification and barcoding in a two-step barcoding procedure. In
short, the first-step primers (341f and 805r) contained adapters for
introducing Illumina adapters and dual barcodes were used in the
second step. The first-step PCR primers were thus (adapter
sequence, followed by primer sequence) adapter-341f (‘5 - ACA
CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCTAC
GGGNGGCWGCAG-3′) and adapter-805r (‘5-AGACGTGTGCT
CTTCCGATCTGACTACHVGGGTATCTAATCC-3′). The first
step amplicon PCR (ampPCR) was carried out in duplicate in
20 µL reaction mixtures containing 1 × Q5 reaction buffer,
0.2 mM dinucleoside triphosphates (dNTPs), 0.5 µmol L−1 for-
ward and reverse primers, 0.4 U of Q5 high-fidelity DNA poly-
merase (New England BioLabs), as well as environmental DNA as
template that was normalized to equal amounts of 16S rRNA gene
copies prior to barcoding in order to increase comparability and
reduce PCR bias. Cycling conditions for 1st-step ampPCR were
98 °C for 1 min, followed by 20 cycles of 98 °C for 10 s, 62 °C for
30 s, 72 °C for 30 s, and a final extension at 72 °C for 2 min. The
duplicate products were pooled and purified using the Agencourt
AMPure XP purification system (Beckman Coulter). The second
PCR step containing variable combinations of primers with dif-
ferent multiplex-identifiers for sample-specific ‘barcoding’ (for-
ward, AATGATACGGCGACCACCGAGATCTACAC-[index]-A
CACTCTTTCCCTACACGACG; reverse, CAAGCAGAAGAC
GGCATACGAGAT-[index]-GTGACTGGAGTTCAGACGTGT
GCTCTTCCGATCT) binding to the first-step adapters and
incorporating Illumina adapters was carried out in single 20 µL
reactions. Reactions contained 1 × Q5 reaction buffer,
0.2 mmol L−1 dinucleoside triphosphates (dNTPs), 0.25 µmol L−1

forward and reverse index primers, 0.4 U of Q5 high-fidelity DNA
polymerase (New England BioLabs) and 2 µL of purified ampli-
cons from 1st-step ampPCR as template. Cycling conditions for
the 2nd-step index PCR (idxPCR) were 98 °C for 1 min, followed
by 15 cycles of 98 °C for 10 s, 66 °C for 30 s, 72 °C for 30 s, and a
final extension at 72 °C for 2 min. PCR products (amplicon
libraries) were purified as described above and quantified with the
PicoGreen kit (Life Technologies). Products were sequenced at the
SciLifeLab SNP/SEQ sequencing facility at Uppsala University,
Uppsala, Sweden, on an Illumina MiSeq (2 × 300 bp) in two runs.

16S rRNA gene amplicon data analysis. Raw sequence data from
JDS3 from different sequencing runs were processed separately.
After automatic demultiplexing of raw amplicon sequencing data

by the Illumina MiSeq sequencing software into 675 individual
samples (including 66 technical and 329 biological replicate pairs)
from two sequencing runs for JDS3, primers were removed using
the CUTADAPT tool51 and sequences without matching primers
were discarded. The R package dada2 (version 1.8)52 was used for
de-replication, denoising and sequence pair concatenation. After
manual inspection of quality score plots, forward and reverse
reads of the bacterial 16S rRNA gene amplicons were trimmed at
260 and 200 bp length, respectively, and reads with a single phred
score below 10 were removed. After de-replication of reads, for-
ward and reverse error models were created using a subset of
~107 sequence reads. Chimeras were removed using the “remo-
veBimeraDenovo” function in “dada2.” Taxonomy was assigned
using the Bayesian classifier and SILVA non-redundant database
13853,54. Next, 329 biological replicate pairs for the JDS3 dataset
were merged and averaged to obtain the final Amplicon Sequence
Variants (ASVs) table. The dataset considered for this study
comprised the left, right and center transects for the Danube
River, amounting to 160 samples in total, after exclusion of
samples from tributary sites. Chloroplast, mitochondrial, eukar-
yotic as well as archaeal ASVs were removed using the phyloseq
package version 1.40.0 resulting in 3509 bacterial ASVs. Details
on sample and sequence data are given in Supplementary Table 1.

The code used for sequence data processing is available on
github—https://github.com/alper1976/danube_indicators
(https://doi.org/10.5281/zenodo.8193431)55.

Statistics and reproducibility. Statistical analyses and plot gen-
eration were conducted in R version 4.0.2 (2019-12-12; R Core
Team, 2014). From the ASV table, we created four datasets,
clustering the ASVs on phylum, class, family and genus levels. For
each of the four datasets we calculated the prevalence (occurrence
frequency at each sampling site) and coefficient of variation
(standard deviation of taxon abundance divided by the mean)3.
These two parameters were plotted against each other in a scatter
plot to detect taxa with the highest variance occurring more often
across all sampling sites, as these might represent suitable bio-
logical indicators.

To identify the environmental drivers behind bacterial
community assembly, we selected specific variables among the
metadata (“pH,” “Electric Conductivity,” “water temperature,”
“River km/Distance to mouth,” “Ntot,” “Chl a,” “DOC,” “Total
Coliforms (LOG10(x+ 1),” “BacHum (LOG10(x+ 1),” “AllBac
(LOG10(x+ 1),” “E.coli (LOG10(x+ 1)”) (Supplementary Fig. 2).
Missing observations were imputed with the mice function from
the ’namesake’ R package (version 3.13.0) and the VIM package
(version 6.2.2), using the Predictive Mean Matching imputation
approach56. Relationships between beta diversity and chlorophyll
a were investigated in order to characterize the extent of linearity
along this gradient and look for possible thresholds associated
with shifts in microbial community composition. The analysis
was performed using pairwise bacterial community composition
Bray-Curtis dissimilarities along the chlorophyll a gradient
according to Fontaine et al.57.

Prevalence/variance analysis of the microbial community
structure. By using a step forward selection model (vegan version
2.6-2), we selected the variables most related to the Hellinger-
transformed Bray-Curtis dissimilarity matrix for each of the four
bacterial taxonomic levels. The aim of forward selection was to
identify environmental parameters covarying with community
composition. Next, the most informative variables were tested for
multicollinearity by using the variance inflation factor value
and tolerance value. Those variables showing a variance
inflation factor value above 5 were excluded from further
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analyses. A distance-based Redundancy Analysis (dbRDA) was
performed by using the Hellinger-transformed Bray–Curtis
matrix for each of the four taxonomic levels by only including the
most prevalent and variable taxa with the above selected metadata
to identify specific relationships amongst phyla, classes, families
or genera with particular environmental drivers.

Spatio-temporal identification of bacterial bioindicators. Bio-
logical status-related variables (chlorophyll a concentration as a
proxy for eutrophication and classification of saprobity according
to the Saprobic Index) for downstream sites were predicted using
information from upstream bacterial community composition.
The identification of ASVs informative for biological status pre-
diction was performed in two main steps. At first, we created an
unsupervised random forest model (randomForest version
4.6–14) in order to gain knowledge on the latent structure of the
sites based on ASVs, in order to prefilter the ASV table due to the
following screening step being computationally demanding.
Without knowledge of the true structure within the data, a grid
search optimization of parameters for the unsupervised random
forest model was performed on a supervised model where the
response variable was chlorophyll a concentration, and the
explanatory data was the Hellinger-transformed ASV abundance
table. The lowest mean squared error of these supervised learning
models was obtained with a combination of mtry=1600 and
ntree=30 with a 0.8/0.2 dataset split for training and testing sets.
Using these parameters, the unsupervised random forest model
was trained on the same Hellinger-transformed ASV abundance
table. From the unsupervised model output, candidate ASVs for
downstream analysis were selected based on exceeding a thresh-
old of 0 in percentage increase of mean squared error (%IncMSE).

The second main step in the ASV screening process was to run,
for each ASV in decreasing order of %IncMSE, a grid search for
the optimal combination of steps (i.e., number of upstream sites)
to use for (i) transformation and (ii) lag using XGboost (sci-kit
learn implementation of XGboost version 1.3.3). In other words,
the objective of the grid search is to find the two optimal shifting
frames of number of sites for each ASV used for predicting
response variables. The transformation in this case is scaling and
centering of ASV abundances, while lag is the number of
observations needed from upstream sites for the prediction at a
given downstream site. The criterion for selecting the best
combinations of values for transformation and lag was the model
R squared on the test set for chlorophyll a and accuracy
percentage for biological status classification. The design matrix
for the ASV screening initially contains sampling ID, transect
code (left, right, and center), and distance to the river mouth.
These metadata variables are included to account for the
continuity of each longitudinal transect in terms of laminar flow
dynamics as well as travel time in the case of distance to the river
mouth. Upon yielding an improved model R squared, an ASV is
added to the design matrix in its optimal transformation and lag
combination. The ASV screening process was run 1000 times, for
both water quality variables, with random ASV order and
random combinations of XGboost hyperparameters. However,
for the classification based on the Saprobic Index, two observa-
tions presented high biological status and first appeared at 550 km
from the river mouth (Supplementary Fig. 3), which is past the
first 80 % of observations, by order of distance from the Danube
source. It is impossible to evaluate model accuracy if the test set
contains variable classes which are not present in the training set.
Thus, in order to include observations of all variable classes in the
training set, the training and testing split of the data for XGboost
models (both for chlorophyll a concentration and biological

status classification) was set at 0.85 and 0.15 respectively, with the
split occurring after the first 85% of observations.

The model outputs for the ASV screening for biological
classification were filtered to keep only those presenting an
accuracy of 100 %. In the case of chlorophyll a, the model yielding
the highest R squared was kept. The model outputs were turned
into a presence/absence table with individual models as rows and
ASVs as columns for water quality classification. The resulting
table was then used for a network analysis, performed using R
library igraph (version 1.2.4.2). Co-occurrence and co-exclusion
networks were used to investigate information content and
redundancy between ASVs. Informational redundancy between
individual taxa, in the sense of information content translating
into model predictive power, was here interpreted as ASVs which
are never present together in any individual screening process
output. The logic behind this assumption is that ASVs are
mutually exclusive if they contain shared predictive information.
As the screening process will pick up the first ASV of a set
containing a given share of information, the following ones from
that same set would be left out since they would not improve
the model.

In opposition to co-occurrence where there is certainty about
said relationship, the same cannot be assumed from co-exclusion
found here since it could result from the limited number of
random permutations of ASVs screened together. Nevertheless, a
small number of ASVs appeared in most of the screening process
outputs, suggesting a semblance of saturation in their sampling
and thus that their co-exclusion relationships are accurate. The
selection of ASVs kept for this co-exclusion analysis was thus set
at the 95th percentile by number of occurrences. A dendrogram
was then built with all the ASVs yielding the best models for
eutrophication and water quality to visualize taxonomic overlap
between predictors for both variables. The hierarchical clustering
was performed on a distance matrix computed from the
taxonomy table.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Data from the ICPDR that were used in this manuscript can be found on GitHub—
https://github.com/alper1976/danube_indicators (https://doi.org/10.5072/zenodo.
1222217)55. All sequencing data are available in NCBI Sequence Read Archive under
accession number PRJNA835446. Additional data can be obtained upon request from the
ICPDR. The source data behind histograms in Figs. 1, 2, and 5 are available in
Supplementary Data 1–3, respectively.

Code availability
Code used for sequencing data processing, modeling, statistical analysis and additional
detail on the approaches are available on GitHub—https://github.com/alper1976/
danube_indicators (https://doi.org/10.5281/zenodo.8193431)55.
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