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Abstract
Lakes worldwide are affected by multiple stressors, including climate change. This in-
cludes massive loading of both nutrients and humic substances to lakes during extreme 
weather events, which also may disrupt thermal stratification. Since multi-stressor 
effects vary widely in space and time, their combined ecological impacts remain dif-
ficult to predict. Therefore, we combined two consecutive large enclosure experi-
ments with a comprehensive time-series and a broad-scale field survey to unravel 
the combined effects of storm-induced lake browning, nutrient enrichment and deep 
mixing on phytoplankton communities, focusing particularly on potentially toxic cy-
anobacterial blooms. The experimental results revealed that browning counteracted 
the stimulating effect of nutrients on phytoplankton and caused a shift from photo-
trophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation 
by browning was identified as the likely mechanism underlying this response. Deep-
mixing increased microcystin concentrations in clear nutrient-enriched enclosures, 
caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring 
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1  |  INTRODUC TION

Multiple stressors, such as nutrient enrichment and climate change have 
increased the occurrence of cyanobacterial blooms in lakes worldwide 
(Huisman et al., 2018), posing severe challenges for lake management 
(Jeppesen et al., 2017). Nutrient enrichment from diffuse agricultural 
runoff and urban wastewater is the reason for moderate or worse 
ecological status in 22% of lakes in the EU and Norway, ranging from 
<20% in northern countries to >60% in many Central European coun-
tries (EEA, 2018). Nutrient inputs causing toxic cyanobacterial blooms 
threaten ecosystem services such as safe drinking and bathing water 
(Carvalho et al., 2013; Chorus & Welker, 2021; Huisman et al., 2018). 
The responses of lakes to nutrient enrichment are highly variable, de-
pending on a range of characteristics including basin morphometry, 
retention time, alkalinity, humic substances and food-web structure 
(Phillips et al., 2013; Ptacnik et al., 2008; Woolway et al., 2020).

During the last two decades, the concentration of colored dis-
solved organic matter (cDOM) in lakes has increased over large areas, 

causing browning of the lake water, particularly in boreal catch-
ments, due to a combination of reduced rainwater acidity and cli-
mate change entailing increased rainfall and runoff including humic 
substances (de Wit et al., 2016; Meyer-Jacob et al., 2019). Browning 
is not limited to softwaters but can also occur in hardwater lakes, 
triggering regime shifts with consequences for ecosystem struc-
ture and functioning (Brothers et al., 2014; Williamson et al., 2015). 
Differences in responses to nutrients can be partly attributed to 
browning (Isles et al., 2021; Vuorio et al., 2020), which reduces un-
derwater irradiance due to light absorption by cDOM. Moreover, the 
light spectrum is shifted towards the red spectral range of photosyn-
thetically active radiation (PAR, 400–700 nm), because cDOM pref-
erentially absorbs light in the blue range (Falkowski & Raven, 2013).

Altered light conditions modify competitive interactions of phy-
toplankton species (Lebret, Langenheder, et  al.,  2018; Luimstra 
et al., 2020; Stomp et al., 2007). Shade-tolerant cyanobacteria (e.g., 
Planktothrix rubescens and Aphanizomenon flos-aquae) tend to domi-
nate at low light levels, for instance when forming a deep chlorophyll 

data from a 25-year time-series of a eutrophic lake and from 588 northern European 
lakes corroborate the experimental results: Browning suppresses cyanobacteria in 
terms of both biovolume and proportion of the total phytoplankton biovolume. Both 
the experimental and observational results indicated a lower total phosphorus thresh-
old for cyanobacterial bloom development in clearwater lakes (10–20 μg P L−1) than in 
humic lakes (20–30 μg P L−1). This finding provides management guidance for lakes re-
ceiving more nutrients and humic substances due to more frequent extreme weather 
events.
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climate change, deep-mixing, harmful algal blooms, lake browning, large-scale lake survey, 
long-term monitoring, mesocosm, multiple stressors, nutrient gradient
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maximum (DCM; Selmeczy et al., 2016; Smith, 1986). Other cyano-
bacteria, however, are more successful at high light intensities (e.g., 
Microcystis aeruginosa; Muhetaer et al., 2020; Oliver & Ganf, 2000). 
The ability to move vertically in stratified water columns by means 
of gas vacuoles enhances the flexibility of cyanobacteria to cope 
with poor light conditions, whether in terms of irradiance or spectral 
composition (Reinl et  al.,  2021). Other phytoplankton species such 
as cryptophytes are also highly mobile and can cope with poor light 
conditions by combining photosynthesis and phagotrophy due to their 
mixotrophic abilities (Mitra et al., 2016). Both cyanobacteria and cryp-
tophytes have phycobiliproteins as accessory pigments, which absorb 
blue-green, green or orange light (Cunningham et al., 2019; Falkowski 
& Raven, 2013). This feature provides the two taxonomic groups an 
additional competitive advantage in lakes affected by browning, when 
pH and alkalinity are sufficiently high to ensure adequate bicarbonate 
(HCO3

−) supply for photosynthesis (Senar et al., 2021).
Forecasts of climate change impacts on lake ecosystems must 

incorporate extreme weather events, such as summer storms, which 
are predicted to become more frequent (Gastineau & Soden, 2009; 
IPCC, 2021; Jennings et al., 2012; Stockwell et al., 2020). Such events 
cause large loads of nutrients and cDOM from the catchment to lakes, 
adding to any long-term trends (de Wit et al., 2016). Risk of blooms 
can also be exacerbated in nearshore waters of large oligotrophic lakes 
following increased nutrient loading after extreme rainfall (Sterner, 
Keeler, et al., 2020; Thrane et al., 2022). Additionally, severe storms 
may disrupt the thermal stratification of lakes by inducing deep mix-
ing (Kasprzak et al., 2017; Kuha et al., 2016). The consequences vary 
with storm intensity and frequency and also with characteristics of 
the affected lake (Doubek et al., 2021; Jennings et al., 2012; Stockwell 
et  al.,  2020). Filamentous cyanobacteria tend to be disfavored by 
storm-induced turbulence and deep mixing (Moe et al., 2019; Visser 
et al., 2016). However, when mixing redistributes populations initially 
concentrated in a DCM, blooms of cyanobacteria can develop within 
the surface layer of stratified lakes, driven by enhanced availability of 
light and nutrients (Giling et al., 2017, 2020; Kasprzak et al., 2017).

Unravelling the complex interplay between these multiple 
stressors remains an important challenge for understanding and 
assessing their combined impacts on phytoplankton communities, 
including risks of harmful algal blooms and adapt lake management 
strategies accordingly (Carvalho et al., 2013; Côté et al., 2016). All 
three drivers can be induced by storms and heavy rain events, in 
addition to gradual browning and nutrient enrichment over time. 
We hypothesized that browning counteracts the effects of nutri-
ent enrichment on phytoplankton due to the blocking of incident 
light by cDOM, which limits phytoplankton growth and changes 
species composition. Furthermore, we expected that deep mixing 
induces cyanobacterial blooms in the epilimnion, when a metalim-
netic bloom (DCM) exists prior to deep mixing, unless light limita-
tion is severe because of browning. We tested these hypotheses by 
combining two consecutive enclosure experiments with a compre-
hensive time-series and a broad spatial-scale lake dataset to evalu-
ate the responses of phytoplankton communities in stratified lakes 
to nutrient enrichment, browning, and deep mixing disrupting the 

thermocline. Our main goals were (i) to determine the combined 
effects of browning and nutrient enrichment on phytoplankton 
communities with particular attention to harmful cyanobacteria, 
(ii) to investigate how storm-induced deep mixing interacts with 
nutrient enrichment and browning to affect phytoplankton com-
munities, and (iii) to provide guidance to improve nutrient manage-
ment strategies for stratifying lakes.

2  |  MATERIAL S AND METHODS

2.1  |  Research approach

Our research approach covers three complementary approaches 
(Figure  1): (a) two consecutive large enclosure experiments in the 
LakeLab installed in Lake Stechlin (North-Eastern Germany) applying 
gradients of nutrient loading and browning combined with deep mix-
ing to assess the combined effects on natural plankton communities, 
(b) a 25-year time-series from Lake Vansjø-Vanemfjorden (South-
Eastern Norway) analyzing the dynamics of nutrients and browning 
over time, (c) a large lake dataset including nearly 600 lakes across 
northern Europe covering long gradients of nutrients and browning 
(Moe et al., 2013). Comparing these three lines of evidence is crucial 
to elucidate the generality of combined stressor effects on phyto-
plankton communities in experimental and natural lake ecosystems.

2.2  |  Enclosure experiments

2.2.1  |  Set-up and experimental design

Two consecutive enclosure experiments were carried out in sum-
mer 2015 at the LakeLab, a large enclosure facility deployed in the 
deep stratified clear-water Lake Stechlin (North-Eastern Germany, 
Figure  1a). We used a total of 21 enclosures, each ca. 20 m deep 
and 9 m in diameter, thereby enclosing a water volume of ca. 
1300 m3 (Giling et al., 2017). A gradient design was chosen to maxi-
mize the number of predictor levels, instead of replication at each 
level (Bergström & Karlsson,  2019; Gerhard et  al.,  2023; Kreyling 
et  al.,  2018). This design is well suited to capture non-linear re-
sponses of phytoplankton and cyanobacteria to nutrient enrichment 
(Carvalho et al., 2013; Ptacnik et al., 2008).

Experiment I was designed to test for effects of a single heavy rain 
event by simulating one major initial pulse of nutrients and brown-
ing. Seven nutrient levels were fully crossed with three browning 
levels (Table 1a). The intended concentrations of total phosphorus 
(TP) covered a broad gradient from oligo-mesotrophic to eutrophic 
conditions (Table 1a) including the critical threshold for cyanobacte-
ria response to nutrient enrichment (Carvalho et al., 2013). An arith-
metic progression (an = 18 + n

2) was applied to select the intended 
TP concentrations, starting with the lake epilimnion TP (18 μg L−1). 
Phosphorus (P) and nitrogen (N) were added as orthophosphoric 
acid (H3PO4) and ammoniumnitrate (NH4NO3). Nitrogen was added 
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to ensure a ratio of bioavailable N to P as in the lake water, which was 
close to the Redfield ratio (7:1 by mass). Browning was achieved by 
adding HuminFeed (HF; HuminTech GmbH, Grevenbroich, Germany), 
a highly soluble natural commercial product that has the advantage 
of strongly staining water without adding significant amounts of 
bioavailable carbon or nutrients (Scharnweber et  al., 2021). Three 
browning levels corresponded to browning levels in natural lakes: 
(A) low = clear or oligohumic (<5 mg Pt L−1, no addition of HF); (B) 
medium = mesohumic (67 mg Pt L−1, addition of 5 mg HF L−1); (C) 
high = polyhumic (133 mg Pt L−1, addition of 10 mg HF L−1). Experiment 
I lasted 7 weeks from early June to late July 2015. The amounts of 
HF, P, and N added to each enclosure are given in Table S1.

Experiment II followed directly after the end of Experiment I with-
out changing the water in the enclosures and lasted for 7 weeks from 
late July to early September 2015. This experiment was designed to 
test for effects of repeated nutrient enrichment and browning by 
weekly adding nutrients and humic substances, as well as physically 
disrupting the thermocline by deep mixing, thus simulating a series 
of storm events. Nutrients and HF were added for 7 weeks follow-
ing the scheme shown in Table 1b. For each enclosure, the amounts 
of added nutrients and HF were the same each week after initially 
adjusting the concentrations to the intended level (Table  1b). The 
added amounts differed among the enclosures to ensure a relatively 

constant nutrient enrichment level for each of them (Table S1). Nine 
of the 21 enclosures used in the experiment (three for each browning 
level) were weekly mixed to 14 m depth referred to as deep-mixed 
(dm; Table 1b), while avoiding sediment disturbance (Section S1.1). 
Mixing of the 12 remaining enclosures, which served as controls for 
the deep-mixing treatments, was limited to 8 m depth referred to 
as shallow-mixed (sm; Table 1b), reflecting the epilimnion depth of 
Lake Stechlin between 7 and 9 m. The amounts of nutrients added 
were calculated to obtain the same phosphorus concentrations for 
both mixing treatments (15 = no addition, 20, 30 and 50 μg P L−1) and 
the three browning levels. Target concentrations for the browning 
were <5 (no HF addition), 30 and 60 mg Pt L−1 (addition of 2.25 and 
4.5 mg HF L−1) for the medium and high browning levels, respectively.

2.2.2  |  In situ measurements, sampling, and analyses

All enclosures were equipped with automatic profilers holding mul-
tiparameter probes for continuous measurements of water tempera-
ture, pH, oxygen, turbidity, and chlorophyll fluorescence (YSI Inc., 
Yellow-Springs, USA; see further details in Section S1.1) and sensors 
to measure PAR (LI-193 Spherical Underwater Quantum Sensor, LI-
COR Inc., Lincoln, NE, USA). PAR, blue, green, and red light were also 

F I G U R E  1 The three approaches of the study: (a) Large experimental enclosure facility (LakeLab) installed in Lake Stechlin, North-
Eastern Germany (photo M. Oczipka, HTW Dresden/IGB Berlin), each enclosure has a diameter of 9 m; (b) Long-term monitoring site in the 
Vanemfjorden basin (surface area of 11.4 km2) of Lake Vansjø, South-Eastern Norway (photo Unum Media kindly provided by the river basin 
manager Carina Rossebø Isdahl), and (c) Location of 588 lake monitoring sites in northern Europe with colors indicating different lake types 
(see legend, humic lake types in bold font). Map lines delineate study areas and do not necessarily depict accepted national boundaries. The 
blue star shows the location and lake type of the LakeLab photo in North-Eastern Germany and the yellow star shows the location and type 
of the Lake Vansjø-Vanemfjorden basin photo in South-Eastern Norway.
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measured weekly with a spectroradiometer from the surface down 
to the euphotic depth during Experiment I (Section S3). Secchi depth 
was recorded weekly with a 30-cm diameter white disc. Epilimnion 
depth in the enclosures was derived from temperature profiles in the 
enclosures, which were the same as in the surrounding lake (Berger 
et al., 2006). Epilimnion depth ranged from 6.5 to 7 m. In Experiment 
II, the epilimnion depth in the lake increased to 7–9 m, and was ex-
perimentally increased weekly to 14 m in the deep-mixed enclosures.

A hose sampler was used to take weekly integrated water samples 
from the epilimnion (Section S1.1). The sampling depth was adjusted 
weekly in line with the epilimnion depth measured on each sampling 
day. The water samples were filled in 20-L carboys and transported to 
the laboratory within 30 min after collection, where subsamples were 
immediately taken for analyses of water color (absorbance at 436 nm 
converted to mg Pt L−1), concentrations of dissolved organic carbon 
(DOC), total phosphorus (TP), soluble reactive phosphorus (SRP), total 
nitrogen (TN), ammonium (NH4

+), nitrate (NO3
−) and nitrite (NO2

−) and 
chlorophyll a (Section  S1.2, Table  S2). Subsamples of 250 mL were 
preserved with acid Lugol's solution for determination of commu-
nity composition and total phytoplankton biovolume (Section S1.3). 
Cyanotoxins were analyzed with ELISA kits on epilimnetic sam-
ples that were stored frozen (−20°C) until analysis (Section  S1.3). 
Mesozooplankton was sampled weekly by taking vertical hauls from 
1.5 m above the sediment to the surface using a 90-μm mesh plankton 
net and analyzed as described in Section S1.4. The zooplankton:phy-
toplankton carbon ratio was used to indicate the level of zooplankton 
grazing (Jeppesen et al., 2011).

2.2.3  |  Dataset from both experiments

The dataset from the experiments which have been used for this 
paper has been published by Berger et al. (2023).

2.3  |  Time-series data from Lake Vansjø, Norway

Lake Vansjø is a stratified lowland lake (37 km2) in South-Eastern 
Norway, located in a 690 km2 catchment dominated by mixed de-
ciduous and coniferous forest with some agricultural areas; the lake 
is extensively used for recreational activities (Moe et al., 2019). The 
lake consists of two basins, Storefjorden, the eastern large, oligo-mes-
otrophic basin (23.7 km2) with low alkalinity (0.2 mM L−1) and a mean 
depth of 9 m, and Vanemfjorden, the western smaller (11.4 km2) and 
shallower (mean depth of 4 m), but still stratified basin, which is meso-
eutrophic and has moderate alkalinity (Figure 1b). Storefjorden has not 
experienced any major cyanobacterial bloom, whereas Vanemfjorden 
has developed massive cyanobacterial blooms due to high nutrient 
loading from agricultural areas in its catchment (Skarbøvik et al., 2021). 
These toxic cyanobacterial blooms caused a ban on bathing for several 
years before 2009. During the past 25 years Vanemfjorden has changed 
from oligohumic (<30 mg Pt L−1) to mesohumic (30–90 mg Pt L−1) condi-
tions. We therefore chose to use the dataset from the Vanemfjorden 
basin to examine the relationship between nutrients, browning and 
cyanobacterial blooms. The core dataset included TP, TN, water color 
(mg Pt L−1), chlorophyll a and cyanobacteria biovolume. It was down-
loaded from a database at the Norwegian Institute of Water Research 
(NIVA) and are available in Lyche Solheim and Haande (2023). The cy-
anobacteria data used in our analysis are the maximum biovolumes per 
year based on monthly samples taken between June and September. 
All phytoplankton analyses were performed using standardized meth-
ods (Section S1.3).

2.4  |  Large-scale lake survey data

Data on phytoplankton total biovolume, cyanobacteria biovol-
ume and proportion, TP and TN concentrations, alkalinity and 

TA B L E  1 Designs of Experiments I and II conducted in 21 enclosures (A1-C7) deployed in a stratified clearwater lake. (a) Experiment 
I (single nutrient and browning pulse) ran from 10th June to 28th July 2015 and involved seven nutrient and three browning levels. (b) 
Experiment II ran from 28th July to 8th September 2015 and involved four nutrient and three browning levels in addition to deep vs. shallow 
mixing (weekly additions of nutrients and HF and weekly deepening of the thermocline for 7 weeks). All values are nominal concentrations.

(a) Experiment I Intended initial TP concentrations (μg L−1)

Browning Color (mg Pt L−1) 18 19 22 27 34 43 54

Low (clear) <5 A1 A2 A3 A4 A5 A6 A7

Medium 67 B1 B2 B3 B4 B5 B6 B7

High 133 C1 C2 C3 C4 C5 C6 C7

(b) Experiment II Intended levels of TP concentrations (μg L−1)

Mixing treatment Browning Color (mg Pt L−1) 15 20 30 50

Shallow mixed Low (clear) 5 A1 A2 A4 A6

Deep mixed Low (clear) 5 – A3 A5 A7

Shallow mixed Medium 30 B1 B2 B4 B6

Deep mixed Medium 30 – B3 B5 B7

Shallow mixed High 60 C1 C2 C4 C6

Deep mixed High 60 – C3 C5 C7
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water color (cDOM) were extracted for a total of 588 lakes (Moe 
et al., 2023) from a large dataset (2063 lakes) originally compiled by 
national and regional agencies in Europe to develop ecological sta-
tus assessment systems as required by the EU Water Framework 
Directive (WFD) (Moe et al., 2008, 2013). The selected lakes cover 
the whole gradient from ultraoligotrophic to hypereutrophic condi-
tions (TP annual mean concentrations ranging from 1 to 200 μg L−1) 
and the whole humic gradient from oligohumic to polyhumic condi-
tions (color ranging from 1 to 555 mg Pt L−1). All the selected lakes 
are located in Norway, Sweden, Finland, or the UK (Figure  1c), 
which are countries that have intercalibrated their phytoplankton 
assessment methods, thereby ensuring data comparability (Lyche 
Solheim et al., 2014). Epilimnion samples of phytoplankton, nutri-
ents, cDOM, and other physico-chemical variables from each lake 
were taken at two or more occasions between July and September 
in at least 1 year between 1985 and 2009. Analyses are based on 
mean summer values for each lake, except for cyanobacteria where 
annual maximum values were used.

2.5  |  Statistical analyses

The responses of phytoplankton to the experimental nutrient en-
richment and browning were tested by Generalized Additive Mixed 
Models (GAMM; Wood, 2010) based on the mgcv package in R ver-
sion 3.5.2 (R Core Team, 2018), which enables capturing curvilinear 
responses to nutrients (Carvalho et al., 2013; Zuur et al., 2009). The 
main environmental predictors were the measured concentrations 
of TP, TN, and color, as well as elapsed time from the start of each of 
the two experiments (Day).

Response variables were chlorophyll a (chl a), total phytoplank-
ton biovolume (BVPP), and the biovolume and percentage of the 
three dominant taxonomic groups of phytoplankton: cyanobacte-
ria (BVCYANO and %CYANO), cryptophytes (BVCRYPTO and %CRYPTO), 
and chlorophytes (BVCHLORO and %CHLORO; Figure 4). Diatoms and 
other phytoplankton classes with low biovolumes and proportion 
in most enclosures (means ≤1%) were not used as separate re-
sponse variables (Figure 4). For Experiment II, the effect of deep 
mixing was tested by adding this environmental factor to the se-
lected predictor variables for all response variables. The potential 
effect of deep-mixing on cyanotoxin concentrations was assessed 
by comparing pairs of deep-mixed and shallow-mixed enclosures 
having the same nutrient enrichment, using Tukey's honestly 
significant difference test. This was done for each of the three 
browning levels.

The GAMM analyses included data from the second until the 
seventh week of Experiment I and from the third day after each 
weekly treatment in Experiment II to allow enough time for bi-
ological responses to develop. Eight candidate models were 
tested (Section  S6, Table  S5). The Akaike Information Criterion 
corrected for small sample sizes (AICc; Burnham et al., 2011) was 
used to select the most parsimonious among the candidate mod-
els. The modelled biological responses were visualized by vis.gam 

contour-plots of TP and color to depict the interaction of the two 
variables. They were based on the most parsimonious models 
where the TP × color interaction was significant (p < .05), or else 
on the best model including at least one of these two variables 
that was statistically significant.

The cyanobacteria biovolume data from Experiment I, from 
Vanemfjorden and the survey dataset from 588 northern lakes 
were also analysed using GAMMs to explore the consistency of 
the cyanobacterial response across the experimental and empirical 
long-term and broad-scale datasets. For this cross-dataset analysis, 
the two predictor variables used were TP and color, including their 
potential interaction (tensor). For further details, see Section S6.

3  |  RESULTS

3.1  |  Enclosure experiments

3.1.1  |  Physico-chemical variables in Experiment I

The targeted browning and phosphorus gradients were well estab-
lished at the beginning of Experiment I (Table 1a). Browning (color) 
greatly increased in the enclosures receiving HF, thus attenuating 
light and reducing Secchi depth compared to the clear controls 
(Figure  2). The measured TP-concentrations were largely deter-
mined by the experimental P-additions with no major influence of 
browning. TP ranged from 18 to 44 μg L−1 in the clear enclosures 
(A1-7), from 18 to 55 μg L−1 in the moderately colored enclosures 
(B1-7) and from 18 to 44 μg L−1 in the highly colored enclosures (C1-
7). After the initial increase, both color and TP declined strongly 
over the course of Experiment I, with TP reaching approximately 
the concentrations observed before the experimental additions 
(Figure  2). The fastest TP-decline was found in the clear enclo-
sures. Similarly, after the initial increase, the SRP concentration 
was low or decreased to the detection limit in the clear enclo-
sures. In the brown enclosures, however, the decrease of SRP was 
less pronounced and even increased during the first weeks after 
nutrient and HF-additions. The TN:TP mass ratio of 32 ± 6 in the 
enclosures varied little during the course of Experiment I (data 
not shown). HF-addition only slightly increased dissolved organic 
carbon (DOC) above the initial concentration of 4.5–5.5 mg L−1, 
reaching 5.5–6.0 and 6.0–6.5 mg L −1 in the moderately and highly 
colored enclosures, respectively.

Attenuation of PAR and the spectral distribution of light in 
the enclosures changed substantially with increased browning 
(Figure 3a; Section S3, Table S4). The blue and green spectral ranges 
were strongly attenuated by browning, the red spectral range 
much less. The initial ratio of euphotic depth (zeu) to mixing depth 
(zmix) was above 1 in all enclosures (Figure 3b). The ratio zeu:zmix re-
mained above 1 in almost all clear enclosures during Experiment I, 
but dropped below 1 in enclosures receiving HF, especially when 
high amounts were added. The ratio increased during the course of 
Experiment I (Figure 3b).
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3.1.2  |  Physico-chemical variables in Experiment II

The weekly additions of HF were successful in maintaining the 
intended browning levels throughout Experiment II, as reflected 
by color and Secchi depth (Table 1b, Figure 2). The first nutrient 
addition at the beginning of Experiment II also established the 
intended gradient of TP concentrations (Table 1b, Figure 2). The 
subsequent weekly additions of P and N resulted in relatively 
constant TP and SRP concentrations in the low-nutrient 
enclosures, but showed fluctuations in enclosures with higher 
nutrient levels (Figure  2). However, the relative differences 
between nutrient levels were preserved throughout Experiment 
II. Deep mixing led to higher nutrient concentrations in the 
enclosures with medium and high browning levels and at the two 
highest nutrient enrichment levels, but this was not seen in the 
clear enclosures (Figure  2). The ratio of zeu:zmix remained above 

1 in the clear, shallow-mixed enclosures. In contrast, both deep 
mixing and browning resulted in ratios below 1 (Figure 3b).

3.1.3  |  Phytoplankton responses in Experiment I

The initial phytoplankton community was dominated by filamen-
tous cyanobacteria with Dolichospermum zinserlingii (biomass 
1.0 ± 0.4 mm3 L−1) contributing 70% to the total phytoplankton bio-
mass (Section S2, Figure S1, Table S3). The epilimnetic chlorophyll  a  
concentration and the total phytoplankton biovolume increased 
immediately after the nutrient and HF additions and subsequently 
declined in all enclosures to concentrations lower than before the 
start of the experiment (Figures 2 and 4). The highest chlorophyll a  
concentrations and total biovolumes were observed in the most 
nutrient-enriched, clear enclosures. Significantly lower chlorophyll a 

F I G U R E  2 Dynamics of color, total phosphorus (TP), soluble reactive phosphorus (SRP), Secchi depth and chlorophyll a (chl a) in the 21 
experimental enclosures during Experiments I and II. Three levels of experimental browning (Table 1) are illustrated by blue (A enclosures, 
no browning), green (B enclosures, moderate browning) and orange (C enclosures, high browning) circles and lines. Increasing concentrations 
along the TP gradient are indicated by color changes from light to dark (1–7, see legend on top of graphs). Deep-mixed enclosures in 
Experiment II is depicted by dashed lines.
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concentrations and total biovolumes developed in the brown enclo-
sures (Figures 2 and 4, Table 2).

After an initial increase in some enclosures, the cyanobacteria 
populations declined in all enclosures. The decline happened after 
10 days in the brown enclosures, but only after 20 days in the clear 
enclosures (Figure 4). After the collapse of the cyanobacteria, chlo-
rophytes and cryptophytes became the dominant phytoplankton 
groups. Enclosure A4 deviated from this trend in that a second 
peak of the cyanobacterium Pseudanabaena limnetica developed 
at the end of June, causing the highest chlorophyll a concentration 
(21 μg L−1) measured during Experiment I (Figure  2). While cyano-
bacteria clearly responded negatively to browning and positively to 
nutrient enrichment, cryptophytes responded positively to brown-
ing and negatively to nutrient enrichment. Chlorophytes devel-
oped higher biovolumes in the clear than in the brown enclosures 
(Table 2, Figure 4). Individual chlorophyte taxa, such as Ankyra judayi, 
responded positively to nutrient enrichment in the enclosures sub-
jected to moderate browning.

3.1.4  |  Phytoplankton responses in Experiment II

The epilimnetic chlorophyll a concentration and total phyto-
plankton biovolume during Experiment II showed moderate 
fluctuations in response to different treatments and at different 
times (Figures 2 and 4). Elevated concentrations of chlorophyll a 
and total phytoplankton biovolume were observed in the mid-
dle of Experiment II in most of the nutrient-enriched enclosures 

(Figures  2 and 4, Table  2). Deep mixing did not have significant 
effects on chlorophyll a concentration nor on total phytoplankton 
biovolume (Table 2).

The biovolume and proportion of cyanobacteria were much 
lower in Experiment II than in Experiment I, but the response to 
nutrient enrichment and browning was similar in both experiments, 
increasing with nutrient enrichment and decreasing with browning 
(Figures  4 and 5, Table  2). Cryptophytes dominated in enclosures 
when browning levels where moderate or high. Chlorophytes re-
sponded negatively to browning and positively to nutrient en-
richment. Different species of chlorophytes and conjugatophytes 
became dominant in the clear enclosures, in those that were most 
enriched with nutrients. Specifically, Chlamydomonas sp. was dom-
inant or co-dominant in enclosures A5, A6 and A7, Closterium acic-
ulare in enclosure A6, and Monomastix sp. in enclosures A6 and A7. 
Chlamydomonas sp. was also quite dominant in the most nutrient-en-
riched enclosures at the medium browning level. Including deep mix-
ing as an additional predictor variable did not significantly improve 
the model prediction for most of the response variables, except for 
cryptophyte biovolume, which significantly decreased (BVCRYPTO, 
p = .03) (Table 2).

3.1.5  |  Grazing pressure

Mesozooplankton biomass was much higher in the clear than in the 
brown enclosures in both experiments (Figures S4 and S5). However, 
the zooplankton:phytoplankton carbon ratio (Z:P in Figure 4), used 

F I G U R E  3 Light conditions in enclosures during Experiments I and II. (a) Light attenuation coefficient (spectroradiometer-based kd) for 
four spectral ranges (PAR: 400–700 nm, blue: 430–500 nm, green: 520–565 nm, and red: 625–700 nm) in the clear (dark blue, A), moderate 
browning (green, B), and high browning (yellow, C) enclosures (Table 1a). All effects of browning were significant within each of the four 
spectral ranges (p < .05; Table S3). (b) Changes in the ratio between euphotic depth (zeu) and mixing depth (zmix) as an indicator of epilimnetic 
light conditions in A (clear), B (moderate browning) and C (high browning) enclosures. Thin vertical grey line in the middle indicates the 
transition from Experiment I to II. In Experiment II. Open circles indicate deep-mixing (dm) and filled circles shallow-mixing (sm).
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    |  9 of 23LYCHE SOLHEIM et al.

F I G U R E  4 Phytoplankton community response (see taxonomic classes in legend) and the zooplankton:phytoplankton carbon ratio (Z:P, 
dashed lines) as a proxy for grazing pressure in the 21 enclosures. Experiments I and II are separated by vertical light grey lines. Nutrient 
supply successively increased along the gradient from enclosure 1 to 7 in Experiment I, and were coupled in shallow- and deep-mixed pairs 
of increasing nutrients in Experiment II (Table 1). Browning treatments were A = clear enclosures with no HF added, B = medium and C = high 
levels of HF.
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TA B L E  2 Results of the most parsimonious GAMM models (E, F, G, H) among eight candidate models tested (Table S5) for both 
Experiments I and II. Predictor variables were color, total phosphorus (TP), total nitrogen (TN), elapsed time (Day) and, in Experiments II, 
mixing regime. The selected models show a significant interaction between color and TP concentration for most of the response variables. 
The F-values are a test statistic of the GAMM analysis, p denotes the significance level of the predictors, R2 is the variability in the response 
variable explained by the model. Response variables were chlorophyll a (chl a), total phytoplankton biovolume (BVTOTAL), biovolume of 
cyanobacteria (BVCYANO), cryptophytes (BVCRYPTO) and chlorophytes (BVCHLORO), as well as the biovolumes of these three major taxonomic 
classes relative to the total phytoplankton biovolume (%BV). The p-values in bold font indicate the significant predictor variables.

Experiment I response variable Model Predictor variable F p R2

Chl a H Color, TP 11.0 <.0001 .43

Day 3.0 .09

TN 1.6 .21

BVTOTAL G Color, TP 9.1 <.0001 .42

TN 3.8 .08

BVCYANO F Color, TP 17.0 <.0001 .70

Day 11.5 <.0001

%BVCYANO H Color, TP 21.8 <.0001 .66

Day 42.4 <.0001

TN 1.8 .19

BVCRYPTO E Color, TP 0.9 .40 .02

%BVCRYPTO E Color, TP 5.1 <.0001 .29

BVCHLORO F Color, TP 6.6 <.0001 .54

Day 4.5 .003

%BVCHLORO H Color, TP 3.5 .02 .20

Day 7.8 .001

TN 2.4 .18

Experiment II response variable Model Predictor variable F p R2

Chl a F Color, TP 2.2 .03 .26

Day 7.5 .001

Deep-mixing −0.5 .63

BVTOTAL F Color, TP 2.5 .09 .14

Day 11.0 <.001

Deep-mixing −1.3 .22

BVCYANO E Color, TP 3.4 .04 .23

Deep-mixing 1.3 .21

%BVCYANO E Color, TP 1.9 .10 .16

Deep-mixing 1.1 .28

BVCRYPTO F Color, TP 2.1 .10 .18

Day 17.8 <.0001

Deep-mixing −2.2 .03

%BVCRYPTO F Color, TP 5.2 .0001 .42

Day 5.0 .05

Deep-mixing −0.9 .37

BVCHLORO F Color, TP 4.2 <.0001 .32

Day 3.5 .02

Deep-mixing 1.2 .25

%BVCHLORO F Color, TP 2.3 .06 .19

Day 3.4 .03

Deep-mixing 1.8 .07
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    |  11 of 23LYCHE SOLHEIM et al.

as a proxy for grazing pressure, did not show clear differences among 
enclosures in Experiment I. In the clear enclosures, mesozooplankton 
biomass was positively affected by nutrient additions at the end of 
Experiment I (Figure S4). The only exception was enclosure A4, which 

was dominated by a large predatory calanoid copepod (Heterocope 
appendiculata).

In Experiment II, the Z:P ratio was slightly higher in the clear 
than in the brown enclosures at the two lowest nutrient levels. The 

F I G U R E  5 Contour plots of the modelled interaction effect of total phosphorus and browning (color) on phytoplankton in Experiments 
I and II. The contours (numbers given on the contours) range from low (green) to high (red) values. Selected models show significant 
interactions between total phosphorus and color for all response variables except BVTOTAL (Experiment II), %BVCYANO (EXP II), BVCRYPTO 
(Experiments I and II) and %BVCHLORO (Experiment II). For details on the models, see Table 2.
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mesozooplankton biomass was much higher in the clear than in the 
brown enclosures (Figures  S4 and S5). The Z:P maxima occurred 
between peaks of cryptophyte biovolumes (Figure 4) in two of the 
brown enclosures (C6 and C7) indicating potentially heavy grazing on 
cryptophytes. The Z:P ratio and mesozooplankton biomass tended to 
be higher in the deep-mixed enclosures than in shallow-mixed enclo-
sures at similar nutrient concentrations (Figure 4, Figures S4 and S5).

3.1.6  |  Combined effects on phytoplankton 
responses across experiments

The most parsimonious GAMM models (Table  2) analysed sepa-
rately for the two experiments revealed that browning coun-
teracted the effect of nutrient enrichment on cyanobacterial 
biovolume (BVCYANO) and the proportion of total biovolume 
(%BVCYANO) in both experiments (Figure 5; Table S5). Elapsed time 
and TN were contributing co-variables, with time being more 
important than TN (Table  2). The model explaining most of the 
variation in the data (R2) was for total cyanobacterial biovolume 
in Experiment I (BVCYANO, R2 = .70) followed by the proportion 
of cyanobacteria of the total biovolume (%BVCYANO, R2 = .66). 
Cryptophyte biovolume and proportion of the total phytoplankton 
biovolume showed no clear responses along the nutrient gradient 
but a positive response to browning, while chlorophytes clearly 
responded negatively to browning (Figure 5).

3.1.7  |  Cyanotoxins

Microcystin was detected in quantifiable amounts, while saxitoxin, 
cylindrospermopsin, and anatoxin were below their detection limits. 
The microcystin concentration during Experiment I was high only 
in the clear enclosures with nutrient additions above 20 μg TP L−1. 
The maximum concentration was 6.9 μg L−1 (Figure  6). Microcystin 
concentration was very weakly related with the total biovolume 
of all cyanobacteria across both experiments (R2 = .08; Figure S3). 
However, the relationship was much stronger with the biovolume of 
Planktothrix rubescens (R2 = .62; Figure S3), reaching 0.3–1.2 mm3 L−1 
at the end of June in the clear enclosures receiving high levels of 
nutrients (A5, A6, A7). The microcystin concentrations were low in 
all enclosures subjected to browning in Experiment I (<0.3 μg L−1), 
consistent with the low biovolume of Planktothrix rubescens in those 
enclosures (<0.2 mm3 L−1).

The microcystin concentration measured during Experiment II 
was much lower than during Experiment I (Figure 6) but showed a 
significant positive response to deep mixing in the clear enclosures 
at the two highest levels of nutrient addition (Figure S2). The av-
erage biovolume of Planktothrix rubescens was an order of magni-
tude higher in the deep-mixed (0.1 mg L−1) than in the shallow-mixed 
clear enclosures (0.01 mg L−1). The concentration in all enclosures 
subjected to browning in Experiment II was very low (<0.04 μg L−1), 
similar to the results of Experiment I (Figure 6).

3.2  |  Development of cyanobacteria in a long time 
series from Lake Vansjø, Norway

The TP concentration in Vanemfjorden was around 30 μg L−1 in 
1996, increasing to 35–40 μg L−1 during 2001–2006. The subsequent 
gradual decline towards the WFD good/moderate boundary value 
of 20 μg TP L−1 set for humic Norwegian lakes of moderate alkalinity 
(Figure  7a) followed the implementation of phosphorus reduction 
measures. The chlorophyll a-concentration remained high until 2009, 
with a peak reached in 2007, and then decreased towards the WFD 
good/moderate boundary value. Concentrations of humic substances 
in the basin fluctuated over same 25-year period with an overall in-
creasing trend from oligohumic to mesohumic (Figure 7b). However, 
there were large fluctuations between 1999–2007 with a peak in 
2001. This peak occurred after a major flood in late autumn 2000, 
while the decreasing color down to oligohumic levels in 2003–2006 
happened during drier years (data on precipitation from the nearby 
weather station at Rygge). Cyanobacterial blooms were absent be-
tween 2000 and 2003, but temporarily reappeared between 2004 
and 2007 before declining to low values (Figure 7d). The pronounced 
changes in maximum cyanobacterial biovolume between 2000 and 
2009 did not match the development of phosphorus and chlorophyll a  
but inversely mirrored the fluctuations in water color (Figure 7). Since 
2010, however, the cyanobacterial biomass has been very low, while 
the color has been above 35–40 mg Pt L−1 and the TP has been below 
30 μg L−1 (Figure 7; Figure S6).

3.3  |  Broad-scale patterns of cyanobacterial 
blooms in relation to browning and nutrients

The 588 lakes in Norway, Sweden, Finland and UK with TP < 200 μg L−1 
showed differences in cyanobacteria responses to TP in clearwa-
ter (color <40 mg Pt L−1) versus humic lakes (color >40 mg Pt L−1; 
Figure 8). In the clearwater lakes, the maximum biovolume and pro-
portion of cyanobacteria was higher than in humic lakes at TP con-
centrations <100 μg L−1. When TP exceeds 100 μg L−1, the biovolume 
and proportion of cyanobacteria is very high and similar in both clear 
and humic lakes.

3.4  |  Comparison of cyanobacteria responses 
to phosphorus and water color across the 
experimental and observational approaches

The main patterns of cyanobacterial biovolume in relation to 
TP concentrations and browning were similar across the three 
approaches we used (Figure 9), increasing with nutrient enrichment 
and decreasing with browning. The relationships are highly 
significant for all three data sets (Table 3), although the proportion 
of explained variation (R2) decreases from 70% for the experiments 
(dominated by Dolichospermum zinserlingii) to 51% for the time series 
from Vanemfjorden (dominated by Microcystis aeruginosa before 
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    |  13 of 23LYCHE SOLHEIM et al.

F I G U R E  6 Microcystin concentrations in 21 enclosures during Experiments I and II, which are separated by vertical dotted lines. See 
Figure 4 for further details on labels A, B, C. The nutrient gradient increases from enclosure 1 to 7 in Experiment I and were coupled in 
shallow and deep mixed pairs of enclosures with increasing nutrients in Experiment II. Browing treatments were A = clear enclosures with no 
HF added, B = medium and C = high level of added HF (Table 1).
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browning) and only 4% for the survey of 588 lakes representing a 
wide range of physico-chemical characteristics (e.g., alkalinity, mean 
depth, water residence time) and cyanobacteria species. Despite 
the fundamental differences in the nature of the three data sets, 
they returned not only the same general shape of the relationships, 
but also suggested similar TP-concentrations (10–20 μg L−1) at 
which cyanobacteria are likely to exceed a biovolume of 1 mm3 L−1 
(corresponding to the WHO low risk threshold; (Section  S5) in 
oligohumic lakes). However, in more humic lakes, the cyanobacteria 
exceeded the low-risk threshold only at considerably higher TP-
concentrations (20–30 μg TP L−1) (Figure  9). In Experiment I, this 
biovolume threshold was not exceeded when the water color was 
>25 mg Pt L−1 even at the highest TP-concentration. Cyanobacteria 

had very low biovolume in the epilimnion during Experiment II, 
never exceeding this biovolume threshold.

4  |  DISCUSSION

4.1  |  Aims and main findings

In this paper, we aimed to determine the combined effects of brown-
ing and nutrient enrichment on phytoplankton communities, with 
particular attention to harmful cyanobacteria. We found that brown-
ing decreased the impact of nutrient enrichment on phytoplankton 
biovolume and shifted the species composition from autotrophic taxa 

F I G U R E  7 Long-term changes of summer mean values (June–September) from 1995 to 2020 in the Vanemfjorden basin of Lake 
Vansjø, Norway, for (a) Total Phosphorus concentration, (b) Color (browning), (c) Chlorophyll a, and (d) Cyano (max) (maximum biomass 
of cyanobacteria). The color code in panels a, c, d represents the official Norwegian type-specific ecological status classes of the WFD 
(blue = high, green = good, yellow = moderate, orange = poor, and red = bad). The color code in panel b indicates clear (oligohumic) level in light 
blue and mesohumic level in beige.
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to mixotrophic flagellates. We also aimed to investigate how storm-
induced deep mixing interacts with nutrient enrichment and brown-
ing to affect phytoplankton communities. We found that deep-mixing 
decreased the biovolume of mixotrophic cryptophytes but increased 

the cyanotoxins in the nutrient-enriched clear enclosures. Finally, 
we aimed to provide guidance to improve nutrient management for 
stratifying lakes, offering TP thresholds above which cyanobacterial 
blooms are likely to develop in clearwater and in humic lakes.

F I G U R E  8 Maximum cyanobacterial biovolumes (BVCyano in mm3 mL−1) (a) and percentage of cyanobacteria of the total phytoplankton 
biovolumes (b) as a function of total phosphorus (μg L−1) < 200 μg L−1 during summer (June–September) in 588 lakes from Norway, Sweden, 
Finland and the UK divided into clearwater (oligohumic) lakes (color <40 mg Pt L−1, number of lake years = 1363) and humic lakes (color 
>40 mg Pt L−1, number of lake years = 830). Note log10 scale on the x-axis in both panels and on the y-axis of the left panel.

TA B L E  3 Summary of results from GAMMs assessing the influence of water color and phosphorus supply on the biovolume of 
cyanobacteria in lakes during summer. For the Experiment I, all the data were used, while annual maximum biovolume was used in the lake 
Vansjø-Vanemfjorden and in the broad spatial-scale dataset.

Dataset Predictive variable F-value p-value R2

Experiment I Color, TP 17.0 <.0001 .70

Time-series of Lake Vansjø Color, TP 9.1 .004 .51

Broad-scale lake survey Color, TP 8.5 <.0001 .04

F I G U R E  9 GAMM results showing biovolumes (BV) of cyanobacteria (as mm3 L−1) (blue-green to red colors and numbers given in legend 
on the right side) in relation to color and total phosphorus concentrations in three independent data sets: (a) Experiment I, all the data were 
used (b) lake Vansjø-Vanemfjorden, annual maximum biovolume (c) broad spatial-scale dataset. Grey lines indicate biovolumes of 1 mm3 L−1.
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4.2  |  Importance of underwater light conditions 
induced by browning

Irradiance and spectral composition are critical factors affect-
ing primary production, and hence important in governing com-
petitive outcomes in phytoplankton communities (Dubinsky 
& Stambler,  2009; Huisman et  al.,  1999; Stomp et  al.,  2007). 
Therefore, strong changes in underwater light conditions by 
browning are expected not only to restrain phototrophs as a whole 
but also to shift phytoplankton community structure (Bergström 
& Karlsson,  2019). Community changes from cyanobacteria to 
mixotrophic species have been reported from Canadian lakes with 
high water color (Senar et al., 2021). Our results are in line with 
these expectations, and indicate light-limitation of autotrophic 
phytoplankton growth in response to browning (Diehl et al., 2015; 
Shatwell et  al., 2012). Our results show, however, that the sup-
pression of cyanobacteria by browning in stratified lakes is limited 
to TP concentrations <100 μg L−1. This is further discussed in the 
section on nutrient impacts below.

Despite these multiple lines of evidence, the consistent sup-
pression of cyanobacteria exposed to browning seems counter-
intuitive considering the effective vertical migration ability of 
cyanobacteria by means of gas vacuoles (Deacon & Walsby, 1990). 
Moreover, their accessory pigments (phycoerythrin and phycocy-
anin) enable cyanobacteria to capture light at longer wavelengths, 
which is less absorbed by cDOM than shorter-wavelength light 
(Erratt et  al.,  2021; Stomp et  al.,  2007). Although light require-
ments vary widely among species and strains of cyanobacteria, 
some taxa (e.g., Planktothrix and other filamentous Oscillatoriales) 
tolerate shade (Huisman et al., 1999; Reinl et al., 2021; Reynolds 
et  al.,  2002; Zapomělová et  al.,  2010), often forming a DCM 
below the thermocline in clearwater lakes, including Lake Stechlin 
(Kasprzak et  al., 2017; Posch et  al.,  2012). These features would 
suggest that low light levels caused by browning are less detrimen-
tal to these cyanobacteria than to most other types of phototro-
phic phytoplankton. However, other cyanobacteria, including some 
Dolichospermum species, are more sensitive to dim light, which has 
been ascribed to high energy demands for N fixation (Reynolds 
et al., 2002). This may explain why the dominant cyanobacterium 
in our enclosure experiments, Dolichospermum zinserlingii, declined 
more quickly in the brown than in the clear enclosures. Our re-
sults indicate that Dolichospermum in our experiments, Microcystis 
in Vanemfjorden and chlorophytes are less competitive than mix-
otrophic cryptophytes under dim light, especially when nutrient 
concentrations are <100 μg TP L−1 (Phillips et  al.,  2013). This sug-
gests mixotrophy as the most plausible species trait accounting 
for the success of cryptophytes in the brown enclosures (Calderini 
et al., 2022; Grujcic et al., 2018; Hansson et al., 2019). Increasing 
dominance of mixotrophic phytoplankton under conditions of 
browning in stratified lakes has also been repeatedly reported 
by others (Bergström et  al.,  2003; Deininger et  al.,  2017; Wilken 
et al., 2018). In humic lakes with very high nutrient concentrations 

(>100 μg TP L−1), some cyanobacteria might still outcompete mixo-
trophic flagellates because of nutrient saturation and self-shading, 
which is likely to limit the competitive advantage of both mixo-
trophs and fast-growing chlorophytes requiring bright light. This 
could explain the lack of significant differences between the total 
biovolume and proportion of cyanobacteria in clearwater versus 
humic lakes when TP concentrations exceed 100 μg L−1 (Figure 8).

4.3  |  Impacts of nutrient enrichment

Contrasting with the strong browning effect, the low-moderate 
impact of nutrient enrichment on phytoplankton community dy-
namics in our experiments is remarkable. Although cyanobacte-
ria increased with nutrient enrichment in the enclosures without 
browning (Figure 5) in line with Carvalho et al.  (2013), this enrich-
ment was unable to counter the disappearance of the initially domi-
nant cyanobacteria. The lack of a consistent nutrient stimulation on 
cyanobacteria growth in the brown enclosures can be attributed to 
the overwhelming impact of browning-induced light limitation, as 
discussed above.

However, other mechanisms must play a role to account for 
the decline observed in the absence of browning. One possibil-
ity is potentially high zooplankton grazing in the clear enclosures 
(Figure  4, Figures S4 and S5). However, given the grazing resis-
tance of filamentous cyanobacteria, this possibility was unlikely 
to be of major importance (Lürling,  2021). Another possible ex-
planation is that periphyton on the enclosures walls depleted the 
nutrients, causing the cyanobacteria to produce resting stages 
(akinetes) that sedimented, especially in the clear enclosures not 
affected by browning. This notion is supported by the depletion of 
SRP after 3 weeks in Experiment I (Figure 2). However, the propor-
tion of nutrients captured by periphyton was estimated to be less 
than 15% of the nutrient pool in the epilimnion (Table S6) in both 
the clear and humic enclosures, which makes this explanation un-
likely as well. Alternatively, cyanophages or chytrids, which infect 
cyanobacteria in Lake Stechlin (Van den Wyngaert et  al., 2022), 
could have played a role, but we do not have specific data from 
our experiment to substantiate this disease hypothesis. Thus, the 
most parsimonious explanation for the cyanobacteria decline is 
a natural phenological shift in the plankton community (Sommer 
et al., 2012), as also observed in the epilimnion of the lake during 
Experiment I (data not shown).

The only expected trend relating to nutrient enrichment was the 
promotion of chlorophytes, although intense browning prevented 
even this response. Due to high potential grazing pressure by zoo-
plankton (Z:P > 0.5), this stimulation may have been lower in our 
experiments than in lakes with zooplanktivorous fish, where Z:P is 
normally <0.5 (Jeppesen et al., 2011). Nevertheless, the stimulation 
of chlorophytes in conditions of less severe light limitation is in ac-
cordance with the resource-acquisition traits of these taxa and high 
maximum growth rates (e.g., Schwaderer et al., 2011).
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4.4  |  Effects of deep mixing on phytoplankton 
biovolume and composition

High turbulence in deeply mixed water columns prevents effec-
tive buoyancy regulation by gas vacuoles, implying an adverse in-
fluence of mixing on cyanobacteria in turbulent conditions (e.g., 
Huisman et al., 1999; Posch et al., 2012). Our long-term data from 
Vanemfjorden support this conclusion, as high biovolumes of cy-
anobacteria were restricted to calm periods (Moe et  al.,  2019). 
Consequently, deep mixing has been proposed as an engineering 
measure to suppress cyanobacterial blooms (Visser et al., 2016). The 
results of our enclosure experiments, in contrast, show only weak 
effects of deep mixing on cyanobacteria and most other taxa of the 
phytoplankton community. Cryptophytes were the only group that 
showed a significant negative response to deep-mixing. One reason 
could be that flagellates are generally favored in shallow epilimnia or 
stable stratification (Huisman et al., 1999; Reynolds, 1984), and are 
disfavored when exposed to high turbulence or fluctuating light con-
ditions accompanying turbulence (Guislain & Köhler, 2022; Köhler 
et al., 2018).

In contrast, deep mixing events can disrupt the thermal sum-
mer stratification of deep lakes, thereby redistributing nutrients 
and metalimnetic cyanobacteria into the epilimnion where light 
is available, thus providing excellent growth conditions (Giling 
et  al., 2017; Stockwell et  al., 2020). The biovolume of Planktothrix 
rubescens, a species often forming a DCM in Lake Stechlin (Padisák 
et al., 2010; Selmeczy et al., 2016), was 10 times higher in the most 
nutrient-enriched deep-mixed enclosure than in the corresponding 
shallow-mixed enclosure (0.1 mm3 L−1 vs. 0.01 mm3 L−1). The large dif-
ference was most likely related to upwelling of a metalimnetic pop-
ulation of P. rubescens, as indicated by the red coloration of seston 
retained on membrane filters from all deeply mixed epilimnia and 
the significantly higher cyanotoxin concentrations in these enclo-
sures. Taken together, these patterns and relationships indicate that 
storm-induced deep-mixing in stratified lakes can promote cyano-
bacterial blooms if a metalimnetic layer of cyanobacteria is present 
(Giling et al., 2017; Kasprzak et al., 2017) but also limit them in the 
absence of such a layer (Gastineau & Soden, 2009; Moe et al., 2019). 
The specific responses depend on the prevailing nutrient and light 
conditions (Berger et  al.,  2010; Diehl et  al.,  2015) and hence on 
browning (Bergström & Karlsson, 2019).

4.5  |  Cyanotoxin responses to nutrient enrichment, 
browning and deep mixing

Cyanotoxin concentrations essentially followed the patterns of 
cyanobacterial biovolumes, although the cyanotoxin peaks lagged 
slightly behind the development of cyanobacteria biovolumes in 
most enclosures, suggesting that the toxins were primarily produced 
towards and after cyanobacteria reached peak abundances, when 
nutrient limitation or parasite infection were most likely (Chorus & 
Welker,  2021; Huisman et  al., 2018). Two additional observations 

are particularly worth noting: First, high concentrations of up to 
6.9 μg microcystin L−1, which clearly exceeded the WHO low-risk 
threshold of 1 μg L−1 for safe drinking water consumption (Chorus & 
Welker, 2021), were restricted to clear enclosures with >20 μg TP L−1 
identified as the critical levels for cyanobacterial development 
(Carvalho et  al.,  2013). A possible reason for the association 
of browning with low cyanotoxin concentrations is that toxin 
production is energy costly. This would suggest that light limitation 
caused by browning altered the resource allocation of cyanobacteria 
compared to the situation in clear lakes (Kardinaal et  al., 2007). It 
is also possible that microcystin produced in those conditions was 
adsorbed to humic substances, leading to an underestimation of 
toxin production by our ELISA analyses (De la Cruz et  al., 2012). 
However, such matrix effects were unlikely to be important, 
because the concentrations of humic substances in our experiments 
were well below the threshold of 10 mg L−1 at which the ELISA test 
kit manufacturer identified potential for assay interference.

A second important point is that although the dominant cy-
anobacterium in Experiment I, Dolichospermum, can produce mi-
crocystin (Dreher et al., 2019), total cyanobacterial biovolume was 
only weakly correlated with microcystin concentration (Figure S3). 
Instead, cyanotoxin concentrations showed a clear positive relation-
ship with the biovolume of Planktothrix rubescens (Figure S3). These 
relationships match previous field data from Lake Stechlin where 
microcystin concentrations of 27 μg L−1 could not be attributed to 
the dominant species, Dolichospermum circinalis, but were correlated 
with the appearance of less abundant taxa such as Planktothrix ru-
bescens (Dadheech et al., 2014). Together, these experimental and 
field studies thus underline the importance of considering spe-
cies-level—and potentially strain-level (e.g., Hellweger et al., 2022)—
relationships between cyanobacteria and cyanotoxin production 
when attempting to forecast risks to water quality arising from in-
teractive effects of nutrient and cDOM supply and storm-induced 
deep mixing of stratified clearwater lakes.

4.6  |  Interactions of multiple stressors

Evidence from both our experimental and observational results 
demonstrate that browning and nutrient enrichment have opposing 
effects on autotrophic phytoplankton (see also Birk et al., 2020; Côté 
et al., 2016; Spears et al., 2021). Specifically, browning counteracted 
the nutrient stimulation of phytoplankton by nutrient enrichment, 
most likely by blocking incident light. This not only limited 
phytoplankton growth but also shifted the species composition 
from cyanobacteria to mixotrophic cryptophytes, which developed 
in brown waters—unless they were restrained by deep mixing. In 
fact, when a DCM forms in clear stratified lakes, deep-mixing can 
amplify the stimulation of phytoplankton by nutrient enrichment, 
because cyanobacterial biomass is mixed into the epilimnion where 
light and nutrient limitation is alleviated (Giling et al., 2017, Kasprzak 
et  al.,  2017). In the absence of a DCM, however, deep mixing 
would counteract the stimulatory effect of nutrients because both 
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turbulence and the lowered average light availability resulting from 
a deepend epilimnion hamper phototrophic phytoplankton (Moe 
et  al.,  2019), including cyanobacteria and mixotrophic flagellates. 
Similarly, deep mixing is likely to exacerbate the adverse effects of 
browning on phytoplankton by aggravating light limitation (Berger 
et al., 2006; Diehl et al., 2015).

4.7  |  Lake management implications

Understanding the complex interplay of multiple stressors and the 
combined impacts on phytoplankton communities, including risks 
of harmful algal blooms, is important to adapt current lake manage-
ment strategies (Carvalho et al., 2013; Côté et al., 2016; Poikane 
et al., 2019). An important message for lake management from our 
results is, therefore, that browning effectively suppresses cyano-
bacterial blooms in stratifying lakes up to a high TP concentration 
of 100 μg L−1 (Figure 8). Above this TP concentration, the effects on 
phytoplankton biomass and composition are levelling off (Phillips 
et  al.,  2008, 2013), probably as a result of self-shading. Multiple 
lines of evidence in our study suggest that the phosphorus thresh-
old for cyanobacterial blooms exceeding 1 mm3 L−1 (corresponding 
to WHO low-risk threshold; Section S5) is 10–20 μg TP L−1 in clear 
stratified lakes and 20–30 μg L−1 in mesohumic stratified lakes, cor-
roborating results from other studies (Carvalho et al., 2013; Derot 
et al., 2020; Vuorio et al., 2020). The TP target in clear stratified 
lakes should therefore not exceed 20 μg L−1. Such a low threshold 
(9 μg TP L−1) has been implemented in Norwegian legislation for 
deep lakes characterized by low alkalinity, high water transpar-
ency, and stable summer stratification (Norwegian Classification 
Guidance,  2018). The higher TP threshold where cyanobacterial 
blooms may arise in brownwater lakes justifies slightly higher ad-
missible TP targets without compromising the objectives of the 
EU WFD. However, in most EU countries, current TP targets (per-
missible concentrations) are much higher, up to 100 μg L−1 (Kelly 
et  al.,  2021; Lyche Solheim et  al.,  2020; Phillips & Pitt,  2016). 
Clearly, more stringent TP targets and nutrient reduction measures 
to meet those targets are needed to protect stratified clearwater 
lakes from toxic cyanobacterial bloom formation.

Climate-proofing of lake management requires considering also 
other aspects than P thresholds, such as hypolimnetic oxygen deple-
tion promoted by high temperatures and prolonged stratification pe-
riods, with negative impacts on zooplankton, benthic fauna and fish 
(Brothers et  al.,  2014); phosphorus and methane release from sedi-
ments as a result of anoxia (Bartosiewicz et al., 2021; Knoll et al., 2018); 
or the role of N availability in controlling cyanobacteria biomass and 
cyanotoxin production (Gobler et  al.,  2016; Hellweger et  al., 2022; 
Litchman,  2023). Furthermore, for brownwater lakes attention is 
needed to reduce the risk of other harmful algal blooms, such as the 
rapidly spreading, skin irritating Gonyostomum semen, which tends to 
be favoured by nutrients and browning (Hagman et al., 2020), espe-
cially if high concentrations of iron (and Mn) contribute to the brown 
color (Lebret, Östman, et al., 2018). Thus, the combination of nutrient 

and climate change-related stressors (global warming and more fre-
quent summer storms) will require tailored nutrient management 
schemes to reduce the risk of cyanobacterial bloom formation in lakes 
(Huisman et al., 2018; Reinl et al., 2023; Sterner, Reinl, et al., 2020).
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