
1. Introduction
Sea surface salinity (SSS) is a crucial variable to understand ocean circulation, mixing between offshore seawa-
ter and freshwater, and influences many marine biogeochemical and physical processes (Font et  al.,  2010; 
Vandermeulen et al., 2014). Salinity, with temperature, determines the density of seawater, thus, salinity influ-
ences the thermohaline circulation and plays an important role in climate change (de Boyer Montégut et al., 2007; 
Zhu et al., 2014). In addition, SSS is also an essential variable to improve the accuracy of determining air-sea 
CO2 fluxes, sea surface current fields, and El Niño-Southern Oscillation forecasts (Chakraborty et al., 2014; Köhl 
et al., 2014; Yang et al., 2010).

However, it is difficult to obtain SSS data with sufficient temporal and spatial resolution based on ship-based 
measurements. Here, remote sensing is being considered to use to estimate salinity, sourced from remote data 
from microwave satellite sensors launched to observed SSS from space (ESA Soil Moisture and Ocean Salin-
ity (SMOS), NASA Aquarius/SAC–D, and NASA Soil Moisture Active-Passive (SMAP), launched in 2009, 
2011 and 2015, respectively). Nevertheless, these satellite sensors are limited in monitoring SSS in the inshore 
waters as a result of the coarse spatial resolution (30–100 km), low revisit frequency (three days or longer) as 
well  as the influence of land contamination (Bao et al., 2021; Entekhabi et al., 2010; Font et al., 2010; Koblinsky 
et al., 2003). Therefore, they are not considered effective tools for monitoring the SSS dynamics in the East China 
Sea (ECS).

In order to observe the SSS distributions continuously for the coastal waters, ocean color measurements have 
been widely used due to their high spatial-temporal resolution (Ahn et  al.,  2008; Bai et  al.,  2013; Chen & 
Hu, 2017; Choi et al., 2021; Geiger et al., 2013; Hu et al., 2003; Kim et al., 2020; Marghany & Hashim, 2011; 
Qing et  al.,  2013; Sun et  al.,  2019; Urquhart et  al.,  2012; Zhao et  al.,  2017). In these studies, there are two 
main routes to retrieve the SSS from space, developing the relationship between SSS and the colored dissolved 
organic matter (CDOM) absorption coefficient (aCDOM, m −1) and the aCDOM can be estimated from ocean color 
measurements (Ahn et al., 2008; Bowers & Brett, 2008; Carder et al., 2003; Del Vecchio & Blough, 2004; Zhu 
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et al., 2011); and directly developing the linear or nonlinear relationship between SSS and ocean color measure-
ments, such as remote sensing reflectance (Rrs, sr −1) (e.g., Chen & Hu, 2017; Kim et al., 2020; Qing et al., 2013; 
Sun et al., 2019). Either way, the principle is that SSS in the coastal waters can be tracked by CDOM (Del Vecchio 
& Blough, 2004; Hu et al., 2003) as CDOM is mainly from terrestrial sources, mostly imported through river 
discharge. However, CDOM has distinct local characteristics in different coastal waters, and is not a conservative 
variable, regulated by biogeochemical and physical processes (Bai et al., 2013). Thus, the relationship between 
SSS and aCDOM may change seasonally and spatially. In addition, there are large uncertainties when CDOM is 
retrieved from Rrs(λ), especially in the turbid coastal waters.

Traditional regression methods, including multiple linear regression (MLR) and multiple nonlinear regres-
sion (MNR) have estimated SSS using satellite Rrs data in the Bohai Sea (BS), southern Yellow Sea (YS) and 
low-salinity water plumes in the ECS (Choi et al., 2021; Qing et al., 2013; Sun et al., 2019, respectively), and 
Marghany and Hashim (2011) retrieved SSS from MODIS data in the South China Sea (SCS) using a Box-Jenkins 
algorithm. Machine learning has also been applied to model SSS. For example, a multilayer perceptron neural 
network (MPNN) was used to predict the SSS using satellite-derived Rrs and sea surface temperature (SST) data 
in the northern Gulf of Mexico (Chen & Hu, 2017). To improve the predictive accuracy, a MPNN also used to 
monitor the hourly SSS spatial distribution around the Changjiang Estuary using the predictors, satellite-derived 
Rrs and SST and location (Kim et al., 2020). Moreover, Ahn et al. (2008) and Bai et al. (2013) developed the linear 
relationship between SSS and aCDOM to map the Changjiang River plume. To our knowledge, too few in situ SSS 
data or only SMAP-derived SSS data were employed to establish the SSS model in the previous studies, and used 
different spectral bands although in the same region. Here we examined the traditional regression and machine 
learning methods using a large synchronous data set of in situ SSS and satellite ocean color products, aiming to 
select the best method to estimate the SSS with high spatial-temporal resolution for the whole ESC and covered 
all seasons.

The structure of this paper is as following: Section 2 describes the observed and satellite data and the develop-
ment of random forest based regression ensemble (RF) model; Section 3 evaluates the models performance, inde-
pendent validation, comparison with other method and interannual and seasonal variability of modeled SSS in the 
ECS; Section 4 discusses the model sensitivity, the influence of the Changjiang runoff on SSS, and application 
of RF model in other Chinese marginal seas. A conclusion is presented in the last section.

2. Data Sources and Methods
2.1. Study Region

The ECS is located on the western side of the Pacific Ocean and connects the YS and SCS. It is bounded by 
Korean Peninsula, Chinese mainland, Taiwan, and the Kyushu and Ryukyu Islands (Figure 1). The circulation 
of several major water masses (as shown in Figure 1) influences the hydrological environment of the ECS and 
forming distinctly different physical-biogeochemical sub-regions (Liu et al., 2023). The ECS inner shelf is the 
most heterogeneous region of the ECS as it is strongly affected by Changjiang discharge and coastal waters, 
receiving a large amount of freshwater, nutrients, organic matter, which is characterized by low SSS and highly 
active biogeochemical processes (Liu et al., 2010). The central region of the ECS shelf is affected by Taiwan 
Warm Current (TWC) and the mixing water between coastal water and offshore water, which is characterized by 
intermediate SSS, and has a strong seasonal cycle. The ECS outer shelf is influenced by the Kuroshio (KS) and 
is weakly influenced by material of terrestrial origin. It is featured by high SST and SSS, low nutrient concentra-
tions and biological activity.

2.2. Data Sources

2.2.1. Field Data

We collected publicly available SSS data set in the ECS for the past 20 years (Tables 1 and 4). In Table 1 (for 
model development), 16 cruises were identified for the Changjiang Estuary and ECS inner shelf from March 
2013, August 2013, February to March 2014, July 2014, March 2015, July 2015, March 2016, July 2016, 
July 2016, February 2017, May 2017, July to August 2017, March 2018, July 2018, October 2018, and July 
2020. The field measured SSS profiles at each station were measured directly using a SeaBird conductivity 
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temperature-depth/pressure (CTD) recorders (SBE 25plus or 911plus). 
A cruise was conducted during “Vulnerabilities and Opportunities of the 
Coastal Ocean (VOCO)” on the ECS inner shelf during 12–24 May 2017. 
The discrete field SSS data were measured using a SeaBird CTD recorders 
(SBE 25plus). One additional cruise data set of the ECS was from Xiong 
et  al.  (2019) (these cruises were conducted from December 2005 to July 
2017, for a total of 17 cruises, https://doi.org/10.6084/m9.figshare.9768215) 
and Xiong et al.  (2020) (a cruise carried out on October 2018, https://doi.
org/10.6084/m9.figshare.12630335). The discrete SSS data was measured 
with a calibrated WTW’s TetrCon®925 probe or using a SeaBird CTD 
recorders (SBE 911plus). Additionally, two cruises were carried out for the 
whole ECS from 13 to 20 May 2018 and 14 to 24 May 2019. The field meas-
ured SSS profiles were obtained directly using a SeaBird CTD recorders 
(SBE 911plus).

In addition, field SSS data were obtained from Surface Ocean CO2 Atlas 
(SOCAT) version 2022 from May 2003 to October 2019 (Bakker et al., 2022, 
https://www.socat.info/index.php/data-access/) and World Ocean Database 
(WOD) 2018 from February 2003 to June 2020 (Boyer et al., 2018, https://
www.ncei.noaa.gov/products/world-ocean-database). Note that the field SSS 
data from SOCAT was ship-based underway data, but the SSS data from 
WOD was discrete data including CTD recorded data and fixed-location 
Argos. The spatial distribution of all the field-measured SSS data that were 
used for developing the SSS model is shown in Figure  2a with cover all 
seasons.

The field-measured SSS were used as an independent data set to evaluate the 
SSS model skill (not included in model development) is presented in Table 4. 

Five more cruises were conducted in the Changjiang Estuary and ECS inner shelf from 12 to 21 May 2020, 15 
to 27 October 2020, 9 to 15 March 2021, 12 to 18 July 2021, and 14 to 19 October 2021. The field-measured 
SSS data were also measured by using a SeaBird CTD recorders (SBE 25plus or 911plus). Additionally, we also 
downloaded the new field SSS data from SOCAT version 2022 from January 2020 to October 2021 and WOD 
2018 from August 2020 to July 2022. The distribution of the observed SSS data is shown in Figure 6a.

2.2.2. Satellite Data

To obtain high quality and sufficient data set, the observed SSS was matched-up with daily satellite products 
to represent the in situ situation. Moderate Resolution Imaging Spectroradiometer (MODIS) level-2 daily Rrs 
and SST data (spatial resolution of ∼1 km) between 2003 and 2022 were used in this study, and obtained from 
NASA Goddard Space Flight Center (GSFC) (https://oceancolor.gsfc.nasa.gov/). Specifically, the spectral bands 
of Rrs data we adopted were 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm. The MODIS daily Rrs and 
SST were used to matchup with the observed SSS data sets, which within a 3 × 3-pixel window centered on the 

Figure 1. Diagram of the topography and major water currents of the 
ECS. The dark gray arrows indicate the circulations of major water masses, 
including Changjiang Diluted Water (CDW), Yellow Sea Coastal Water 
(YSCoW), East China Sea Coastal Water (ECSCoW), Taiwan Warm Current 
(TWC) and Kuroshio (KS) (Chen, 2009; Qi et al., 2014). Three subregions 
were selected for this study to highlight contrasting regimes of the ECS. Box 1 
(29–32°N, 122–124°E) is near the Changjiang River Estuary, Box 2 (28–30°N, 
124–126°E) is in the central ECS, Box 3 (26–27°N, 126–128°E) is in the ECS 
open water.

Data source Surveying time Range of SSS
Range of SSS with satellite 

matchups
Number of SSS 

observations
Number of SSS observations 

with satellite matchups

Changjiang Estuary cruises 03.2013–07.2020 0.12–34.52 14.68–34.26 1,003 174

201705 VOCO cruise 05.2017 18.12–30.38 18.12–30.25 57 16

Xiong et al. (2019, 2020) 12.2005–10.2018 0.1–34.52 27.89–34.16 347 22

ECS cruises 05.2018–05.2019 24.75–34.58 28.90–34.49 83 16

SOCAT 05.2003–10.2019 28.95–35.05 28.95–34.93 16,201 3,724

WOD 02.2003–06.2020 21.48–35.44 21.48–35.37 9,575 1,705

Note. These SSS data were collected at depths ≤5 m covered all seasons. These SSS data with satellite matchups were used to develop the RF model.

Table 1 
The Sources and Ranges of SSS Measurements, and the Number of These Measurements Match-Up With Daily MODIS L2 Rrs and SST Data
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position of each observation were extracted and averaged. A total number of 5,657 and 2,151 conjugate observa-
tion data were available for model development and independent validation respectively, the spatial distributions 
of the observed SSS data after match up with MODIS Rrs and SST are shown in Figures 2b and 6b.

2.3. Model Development

2.3.1. Model Selection and Structure

Machine-learning approaches (e.g., MPNN, support vector machine (SVM) regression) have been widely used to 
retrieve marine environmental variables, such as sea surface nitrate (SSN), chlorophyll a, and carbonate parame-
ters (pH, total alkalinity, surface seawater partial pressure of CO2) (Chen, Hu, Barnes, Wanninkhof, et al., 2019; 
Hu et  al.,  2021; Li, Bellerby, Ge, et  al.,  2020; Li, Bellerby, Wallhead, et  al.,  2020; Sauzède et  al.,  2015; Yu 
et  al.,  2022), these methods are characterized by the ability to approximate non-linear relationships between 
model inputs and target variables without explicit knowledge of their functional dependencies (Chen & Hu, 2017).

In this study, the traditional regression approaches (MLR, MNR) and machine-learning based regression 
approaches (such as decision tree, random forest, SVM and MPNN) were first tested including Rrs in 9 spectral 

Figure 2. Spatial distributions of the observed SSS in the ECS from February 2003 to July 2020. (a) Locations of underway and discrete SSS observations (b) observed 
SSS data after match-up with daily MODIS L2 Rrs and SST data. (c) Number of observed SSS data in each month between 2003 and 2020 shown in (a) and (b) with and 
without MODIS matchups. Note that the large data gaps in Figure (a) and (b) are due to quality-controlled by various flags such as cloud coverage, stray light and sun 
glint to remove invalid satellite signals.
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bands at 412, 443, 469, 488, 531, 547, 555, 667, and 678 nm, SST and Julian day (JD) as model inputs, all these 
approaches were implemented in Matlab (R2018a). Note that the Rrs in 645 nm was not used as too few data 
could be matched with field-measured SSS data. Among these tested approaches, RF had the best performance 
(Table S1). Thus, the RF was then selected to model the SSS in the ECS. Then the RF model was applied to test 
different combinations of input variables to determine which variables to use (Table 2). The optimal performance 
of the RF model was achieved when Rrs in 4 spectral bands (412, 488, 555, 667 nm), SST and JD were used as 
inputs. Note that SST was used to present the water mixing between freshwater and seawater, and upwelling 
(Chen & Hu, 2017; Palacios et al., 2009), the JD was selected to denote the seasonal cycle.

RF is an ensemble regression algorithm (the structure of RF was shown in Figure 3), which is composed of multi-
ple decision trees (Liaw & Wiener, 2002). An individual decision tree grows depending on the characteristics 
of the input data during the training process. Each decision tree comprises multiple decision nodes and a leaf 
node, the decision nodes assess the characteristics of the input data and pass their subsets to different branches, 
the leaf node represents the end of the splitting process (Krzywinski & Altman, 2017; Li et al., 2018). Therefore, 
decision tree is very sensitive to how and where to split, thence, although a minor change in input data may cause 
large differences in the tree structure, and the predicted results are usually prone to overfit (James et al., 2013). 
Instead, the RF consisted of many decision trees by bagging to decrease the influence of overfitting and improve 
the predictive accuracy and generalization of the model. In the training of the RF model, the training data set is 
resampled by bootstrapping and random subsets of the training data are used to train decision trees, in which way, 
the independence of each decision tree can be greatly improved (Chen, Hu, Barnes, Xie, et al., 2019). The final 
model result of RF is a weighted average of the output from each decision tree.

In this study, developed the relationship between the predictors (Rrs in 412, 488, 555, 667 nm, SST and JD) and 
target variable (SSS) by using a function of fitrensemble in Matlab (R2018a) with the approach designated as 
“bag.” For the model development, the 5,657 conjugate observation data were divided into two subsamples 
randomly, with 80% (N = 4,504) were used to train the RF model, and the remaining 20% (N = 1,153) were used 
to validate the model. During the training process, there are two critical parameters to tune the structure of RF 
model, one is the minimum leaf size (MLS), and another one is number of learning cycles (NLC). The leaf size 
represents the number of data used in each decision node of decision trees, thus, the MLS determines the splits 
and depth of a decision tree. The NLC represents the number of decision trees in the RF model. In this study, the 
NLC were varied from 2 to 50, and the MLS was varied from 1 to 20. After several iterations, when the NLC was 
set to 30 and MLS was set to 8, the RF model was shown to be stable and with the best performance. With these 
settings, the RF model was developed to predict SSS in the ECS.

2.3.2. Data Preprocessing of RF Model

Based on Section 2.3.1, the optimal combination of model inputs is MODIS-derived Rrs in the 4 spectral bands 
(412, 488, 555, 667 nm), SST, and JD. The benefit of using contemporaneous satellite products to develop the 

Model Model inputs

Model training Model validation

R 2 RMSE MAE R 2 RMSE MAE

1 Rrs(412), Rrs(488), Rrs(555) 0.69 1.13 0.52 0.67 1.19 0.53

2 Rrs(412), Rrs(488), Rrs(555), Rrs(667) 0.74 1.03 0.48 0.72 1.09 0.49

3 Rrs(412), Rrs(488), Rrs(555), Rrs(667), SST 0.78 0.95 0.39 0.79 0.95 0.40

4 Rrs(412), Rrs(488), Rrs(555), Rrs(667), SST, JD 0.84 0.81 0.31 0.86 0.77 0.30

5 Rrs(412), Rrs(443), Rrs(488), Rrs(555), Rrs(667), SST, JD 0.83 0.82 0.31 0.85 0.80 0.31

6 Rrs(412), Rrs(443), Rrs(488), Rrs(555), Rrs(667), Rrs(678), SST, JD 0.84 0.81 0.31 0.86 0.77 0.30

7 Rrs(412), Rrs(443), Rrs(469), Rrs(488), Rrs(555), Rrs(667), Rrs(678), SST, JD 0.84 0.81 0.31 0.86 0.77 0.31

8 Rrs(412), Rrs(443), Rrs(469), Rrs(488), Rrs(547), Rrs(555), Rrs(667), Rrs(678), SST, JD 0.83 0.82 0.31 0.86 0.79 0.31

9 Rrs(412), Rrs(443), Rrs(469), Rrs(488), Rrs(531), Rrs(547), Rrs(555), Rrs(667), Rrs(678), SST, JD 0.84 0.81 0.32 0.85 0.79 0.32

Note. Skill statistics are coefficient of determination (R 2), root mean square error (RMSE) and mean absolute error (MAE). The bold values represent the best 
performance of the RF model.

Table 2 
Different Combinations of Input Variables and Their Performance When Training the RF Model
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SSS model due to that the errors from satellite products will be minimized (Chen & Hu, 2017). Since we tested 
several traditional regression approaches and machine-learning based regression approaches, some methods are 
sensitive to the inputs and output data (e.g., SVM, MPNN), thus, both the inputs and output data were normalized 
to eliminate the influence of dimensional of the data on the model (Li, Bellerby, Ge, et al., 2020). All the data 
were normalized using following equations (Chen & Hu, 2017; Xi et al., 2020):

𝑥𝑥𝑖𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖𝑖 − mean(𝑥𝑥𝑖𝑖𝑖𝑖𝑖)

𝜎𝜎(𝑥𝑥𝑖𝑖𝑖𝑖𝑖)
 (1)

with 𝐴𝐴 𝐴𝐴 refers to the standard deviation (SD) of the input or output variables. For the date inputs, the JD was trans-
formed as following equation based on Sauzède et al. (2015) due to the periodicity:

sJD = sin

(

Day ⋅ 𝜋𝜋

182.625

)

 (2)

cJD = cos

(

Day ⋅ 𝜋𝜋

182.625

)

 (3)

Figure 3. Schematic diagram of the RF model. Note that w(i) (where i = 1, 2, …, n − 1, n) is the weight of the predicted SSS from the corresponding decision tree.
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The coefficient 182.625 refers to half of the number of days per year (365.25).

3. Results
3.1. Model Performance

To assess the performance of the RF-based SSS model in the ECS, the SSS estimated by RF model were compared 
with the corresponding observed SSS (Figure 4) using three statistical indices including root mean square error 
(RMSE), coefficient of determination (R 2), and mean absolute error (MAE). During the model training (80% of 
all the field-measured SSS data with satellite matchups), the RMSE was 0.81, MAE was 0.31 and R 2 was 0.84 
(Figure 4a). Similarly, for the mode validation (remaining 20% of all the field-measured SSS data with satellite 
matchups), the estimated SSS with a RMSE of 0.77, MAE of 0.30 and R 2 of 0.86 (Figure 4b). Additionally, the 
RF model performed better at higher SSS during model development, with RMSE of 1.50 and 0.47, MAE of 
0.63 and 0.22 for SSS ≤ 31 and SSS > 31 in the model training, and RMSE of 1.42 and 0.47, MAE of 0.60 and 
0.22 for SSS ≤ 31 and SSS > 31 in the model validation. The performance of the RF model was comparable 
with previous reported studies, for example, Bai et al. (2013) developed the linear relationship between SSS and 
aCDOM (355 nm) to estimate the SSS with 87.1% of the data were within the absolute error of ±1.5 in the ECS, 
Qing et al. (2013) developed a MLR model to estimate the SSS with a RMSE of 0.833 in the BS, and Chen and 
Hu (2017) developed a MPNN model to predict the SSS with a RMSE of 1.2 in the northern Gulf of Mexico. For 
reference, the performances of other traditional empirical approaches (MLR, MNR) and machine-learning based 
empirical approaches with different kernel functions (decision tree, random forest, SVM regression, and MPNN) 
were shown in Table 3. Obviously, the RF (bagged trees) showed the best performance compared to the other 
tested methods with the same input variables, thus, was selected in this study.

The histogram of residuals between observed and modeled SSS in the model training and validation data sets 
showed that 91% of the residuals were within the RMSE of ±0.81 (Figure 5c). Figure 5a showed the spatial distri-
bution of SSS residuals (observed SSS minus estimated SSS) to further explore the RF uncertainties spatially. 
The ECS inner shelf had the largest residuals, while the outer ECS had the narrowest range of SSS residuals. 
Figure 5b showed that the most points of residuals beyond ±2RMSE are concentrated in areas near the Chang-
jiang Estuary, where are intensely affected by Changjiang River discharge during spring and summer due to the 
flooding of the Changjiang River (Li, Bellerby, Wallhead, et al., 2020).

3.2. Independent Validation and Method Comparison

An independent data set (described in Section 2.2.1) was applied to the RF model to further examine the predict-
ability of the RF model in predicting SSS in the ECS (Figures 6a and 6b, Table 4). The comparison between 

Figure 4. Comparison of the estimated SSS by RF model with corresponding observed SSS during (a) model training, and (b) model validation in the ECS.
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observed SSS and corresponding RF-derived SSS had a RMSE of 0.66 and MAE of 0.39 for all independent data 
(Figure 6c). Similarly, the RF model still showed a better performance at higher SSS and larger uncertainties were 
seen for SSS ≤ 31, with RMSE of 3.24 and 0.50, MAE of 2.49 and 0.35 for SSS ≤ 31 and SSS > 31, mainly owing 
to the RF model was more sensitive to the errors of Rrs and SST at lower salinity (Figure 11).

Furthermore, Bai et al. (2013) proposed the SSS-CDOM relationship for the ECS, which was also applied to the 
same independent data set, with a RMSE of 1.78, MAE of 1.41 (Figure 6d). Similar to the RF, the SSS-CDOM 
relationship also showed a better predictive performance in higher SSS range, with RMSE of 5.36 and 1.65, MAE 
of 3.77 and 1.36 for SSS ≤ 31 and SSS > 31. The comparison of the RF model and SSS-CDOM relationship, the 
RF model performed much better than the latter in all SSS range, this may because the semi-analytical method is 
able to interpret some physical mechanisms, but it is difficult to quantify these physical mechanisms accurately 
and also subject to unknown factors. On the contrary, these unknown factors driving the uncertainties in RF 
model could be canceled out by tuning of the model structures and empirical coefficient (Chen & Hu, 2017).

3.3. Seasonal and Interannual Variations of Modeled SSS

The seasonal and spatial variability of monthly SSS distribution estimated by the RF model in the ECS from 
August 2002 to July 2022 are shown in Figure 7, based on the monthly MODIS L3 Rrs and SST data. The esti-
mated SSS values range from 25.76 to 34.77 in spring, 23.02 to 34.48 in summer, 27.39 to 34.73 in autumn, and 
28.83 to 34.77 in winter, with average SSS values of 33.41, 32.34, 33.44, and 33.84, respectively. Regardless of 
the season, the SSS generally increased from nearshore to offshore regions. The lowest SSS generally dominated 
the Changjiang Estuary and nearshore coast due to the import of Changjiang River freshwater, the intermedi-
ate SSS is mainly distributed in the transitional region because of mixing of the coastal low-salinity water and 
offshore seawater, and the high SSS is distributed in the open water, influenced by the high-salinity KS. The 
patterns of the monthly average SSS over the 20-years period in Figure 7 were similar to the observed results of 
Chen et al. (2006) and Lie et al. (2003) and were consistent with studies that modeled the SSS of the ECS from 
satellite (Ahn et al., 2008; Bai et al., 2013; Kim et al., 2020; Sasaki et al., 2008). From October to the following 
April (in the dry season), the northerly East-Asian monsoon prevails over the ECS (Lie et al., 2003). The CDW 

Model Kernel function

Model training Model validation

R 2 RMSE MAE R 2 RMSE MAE

MLR – 0.68 1.13 0.73 0.70 1.14 0.72

MNR – 0.72 1.06 0.70 0.73 1.08 0.70

Decision tree Simple tree 0.75 1.01 0.42 0.78 0.97 0.40

Medium tree 0.77 0.97 0.38 0.80 0.92 0.36

Complex tree 0.76 0.98 0.36 0.81 0.90 0.35

Random forest Boosted trees 0.81 0.88 0.43 0.84 0.83 0.44

Bagged trees 0.84 0.81 0.31 0.86 0.77 0.30

SVM Linear 0.67 1.15 0.72 0.69 1.16 0.71

Quadratic 0.71 1.08 0.63 0.70 1.13 0.67

Cubic −3.66 4.35 2.12 −0.11 2.18 1.24

Fine Gaussian 0.67 1.16 0.42 0.61 1.29 0.45

Medium Gaussian 0.78 0.94 0.42 0.78 0.97 0.41

Coarse Gaussian 0.74 1.03 0.55 0.76 1.01 0.53

MPNN Scaled conjugate gradient optimization and Bayesian regularization 0.76 0.94 0.49 0.79 0.93 0.47

Note. The statistics were calculated based on the model development data set (model training and validation data) using the same input variables including Rrs(412), 
Rrs(488), Rrs(555), Rrs(667), SST and JD. The bold values represent the RF (bagged trees) model has the best performance. Note that the negative R 2 means there was 
a strong bias in the estimated SSS.

Table 3 
Comparison of Model Performances Between Traditional Empirical Approaches (MLR and MNR) and Machine-Learning Based Empirical Approaches With 
Different Kernel Functions (Decision Tree, Random Forest, SVMs and MPNN)
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flows southward along the Zhejiang-Fujian coast and the low-salinity plume is confined to the Changjiang Estu-
ary and a narrow coastal band (Figures 7a–7d and 7j–7l). However, during the wet season, the monsoon switches 
to the southern from May to August, the strong CDW extends farther offshore to northeast and appears as a 
tongue-shaped plume of low salinity (Figures 7e–7h).

The seasonal cycles of estimated SSS for the ECS during the period of August 2002 to July 2022 are shown 
in Figure 8a. SSS decreases gradually from spring to summer, and reaching a minimum value in August, then 
slowly increases from autumn to winter, remaining almost constant in winter. These seasonal variations in the 
SSS were in good agreement with the Changjiang River discharge (Figure 8). Moreover, the SST showed the 
opposite trend to SSS, indicating that from spring to summer, the SST increases gradually resulting in strong 

Figure 5. (a) Spatial distributions of the SSS residuals (observed SSS minus SSS estimated by RF model) and (c) histogram of residuals for the model development 
data set (99.15% of the residuals were within −4–4). (b) Seasonal distribution of stations with SSS residuals greater than ±2RMSE.
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Figure 6. (a) Spatial distributions of the observed SSS in the ECS from 2020 to 2022; (b) locations of observed SSS data after match-up with daily MODIS L2 Rrs and 
SST data; (c) Comparison of the estimated SSS by RF model with corresponding observed SSS using the independent data set shown in (b); (d) Comparison of the 
estimated SSS by Bai et al. (2013) with corresponding observed SSS using the independent data set shown in (b). The black, red and blue dots represent the observed 
SSS were from Changjiang Estuary cruises, SOCAT and WOD.

Data source Surveying time Range of SSS
Range of SSS with satellite 

matchups
Number of SSS 

observations
Number of SSS observations 

with satellite matchups

Changjiang Estuary cruises 05.2020–10.2021 0.11–34.52 19.63–34.52 420 53

SOCAT 01.2020–10.2021 31.04–34.78 31.50–34.78 7,798 1,932

WOD 08.2020–07.2022 4.16–35.22 25.83–35.22 1,775 166

Note. These SSS data were collected at depths ≤5 m. These SSS data with satellite matchups as an independent data set was used to validate the RF model.

Table 4 
The Sources and Ranges of SSS Measurements, and the Number of These Measurements Match-Up With Daily MODIS L2 Rrs and SST Data
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surface stratification, and the fresh water may stay on the sea surface, the SSS continues to decrease. During 
the cold season, with  the intensification of water mixing, the high-salinity bottom and subsurface waters mixed 
into the surface water, which is a contributor to the increase in SSS (Zhang et al., 2010). The Rrs(412) had the 
opposite trend to SSS, while the Rrs(488), Rrs(555), and Rrs(667) showed a similar trend with SSS, suggesting that 
a negative correlation between Rrs(412) and SSS, and there are positive relationships between Rrs(488), Rrs(555), 
Rrs(667), and SSS.

The interannual variability of the area-averaged monthly SSS for the ECS and three subregions from August 2002 
to July 2022 are shown in Figure 9. Over the whole ECS (blue line in each panel of Figure 9), the monthly SSS 
exhibited similar seasonal fluctuations between 31.73 and 34.20 from 2002 to 2022, the lowest SSS value was 

Figure 7. Distributions of monthly average RF-derived SSS in the ECS from August 2002 to July 2022.

Figure 8. (a) Seasonal variations in modeled SSS, MODIS-derived SST and Rrs(λ). (b) Monthly average Changjiang River discharge from August 2002 to July 2022 
(Datong station, data obtained from the Hydrological Information Center of China, http://www.mwr.gov.cn/).
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found in summer while the highest SSS value was found in winter with a SD of ∼±1.49 on average. The monthly 
SSS in three subregions (Box 1, Box 2, and Box 3, Figure 1) also showed a similar pattern of interannual varia-
bility to that of the entire ECS (Figure 9). For example, Box 1 is located near the Changjiang River Estuary, due 
to the effects of seasonal variation in the Changjiang discharge, the SSS in Box 1 was the lowest (26.55–33.07, 
SD of ∼± 1.40 on average) and showed largest seasonal amplitudes compare with other two boxes and the entire 

Figure 9. Interannual variations of MODIS-derived SSS in the whole ECS and three subregions annotated in Figure 1 during August 2002 to July 2022. Error bars 
refer to the SD of monthly average SSS in each region.
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ECS (Figure 9a). Box 2 is located in the central ECS, which is a transitional region affected by water mixing of 
coastal water and offshore water, thus, the SSS showed the intermediate value (29.27–34.14, SD of ∼±0.51 on 
average) and its interannual variation has similar magnitudes as those in the entire ECS (Figure 9b). In additional, 
the lower SSS in Box 2 generally corresponds to the Changjiang River floods (Figures 9b and 12b), indicating 
that the transitional region may be influenced by Changjiang River discharge, especially in flood years. Box 3 is 
located in the ECS offshore water, where the hydrological environment is stable and rarely affected by freshwater 
input. Therefore, the SSS in Box 3 showed highest value (33.26–34.71, SD of ∼±0.20 on average) and weakest 
seasonal amplitudes (Figure 9c).

4. Discussion
4.1. Model Sensitivity

The NLC and MLS are important parameters of the RF model, we examined the model performances on vali-
dation data (N = 1,153) when the NLC ranged from 2 to 50, and the MLS ranged from 1 to 20 (Figure 10). 
Specifically, when the MLS was fixed at 8, the model performance showed significant improvement with the 
NLC was increased from 2 to 10, the model performance showed slight improvement with the NLC was increased 
from 10 to 30, while after the NLC was more than 30, there was no improvement of the model performance. On 
the contrary, when the NLC was fixed at 30, the model performance was relatively stable with the MLS was 
increased from 1 to 8, and the model performed best when the MLS was 8, but after the MLS was more than 8, 
the model performance gradually decreased with the increase of the MLS. Thus, the best performance of the SSS 
model was obtained with the NLC was 30 and the MLS was 8.

To evaluate the sensitivity of the RF model to errors in the input variables, the errors of each variable were added 
into the RF model separately. In order to obtain the MODIS-derived SST uncertainties in the ECS, we compared 
the MODIS-derived SST and field-measured SST by using both the model development and independent valida-
tion data set matchup with satellite SST (Figure 11a), with a RMSE of 1.27°C and R 2 of 0.87. Therefore, errors of 
±1.5°C was added in the SST to do the sensitivity analysis (Figures 11b and 11c). Specifically, added +1.5°C for 
SST uncertainties, the RF model showed very slightly underestimated, with a RMSE of 0.31 and MB of −0.10. 
Conversely, added −1.5°C for SST uncertainties, the RF model showed slightly overestimated, with a RMSE of 

Figure 10. Comparison of the model performance of different NLC and MLS on validation data (N = 1,153). The red line 
represents the model performance response to an increase in MLS with the NLC was fixed at 30. The black line represents 
the model performance response to increasing NLC with the MLS was fixed at 8.
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0.37 and MB of 0.18. These results indicated that the RF model was not sensitive to the SST errors but responded to 
SST errors in a negative way. This may be because the strong Changjiang discharge leads to the lower salinity in the 
warm season, while in cold season, the Changjiang discharge decreases significantly, coupled with upwelling and 
vertical water mixing bring cold and high-salinity subsurface water into the surface, resulting in an increase in SSS.

Unlike SST, assessing the sensitivity of the RF model to the Rrs errors is more complex since the errors in 
MODIS-derived Rrs are not independent spectrally, which means that errors in one band are associated with errors 
in other bands (Chen & Hu, 2017; Hu et al., 2013). The errors in independent MODIS-derived Rrs were simulated 
following the method of Chen and Hu (2017). Briefly, simulated 5,657 Rrs(667) errors in the data set used for model 
development according to Hu et al. (2013) and then calculated the corresponding errors in Rrs(412), Rrs(488), and 
Rrs(555) (Chen & Hu, 2017; Hu et al., 2013). The RF model showed a slight overestimation after propagating Rrs 
errors to the model, with a RMSE of 0.37 and MB of 0.06. These results showed that the RF model was insensitive 
to the Rrs errors. However, the RF model was more sensitive to the Rrs errors at lower SSS range (Figure 11d).

Overall, the estimated SSS variations resulted from errors in SST and Rrs were all within the RMSE of the 
development of RF model, indicating a high tolerance of the RF model to inaccuracies in MODIS-derived 
SST and Rrs. Moreover, as the SST and Rrs data used to develop the RF model were obtained from the same 
satellite, these errors were, likely, already canceled implicitly by the model (Chen, Hu, Barnes, Wanninkhof, 
et al., 2019).

Figure 11. (a) Scatterplot of MODIS-derived SST and in situ SST. Sensitivity of the RF-based SSS model to added (d) Rrs errors and SST errors (b) +1.5°C in SST, (c) 
−1.5°C in SST, based on the model development data set.
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4.2. Effects of Changjiang Discharge on SSS

The distribution of low-salinity plume of the ECS was primarily influenced by the Changjiang discharge 
mentioned in Section 3.3. The study region near the Changjiang River Estuary (Box 1) was selected to analyze 
the relationship between Changjiang River discharge and variations of SSS during the period of August 2002 to 
July 2022. As shown in Figure 12a, there is a negative correlation between the monthly SSS and monthly Chang-
jiang River discharge (R = −0.72, p < 0.001, N = 238), indicating that fluvial input is an important contributor to 
the formation of the low-salinity plum. Our result is consistent with that of Sun et al. (2019), they also found the 
high negative relationship between monthly SSS and monthly Changjiang River discharge, and the lower salinity 
region was caused by freshwater input. The interannual variation of monthly average SSS in Box 1 was in the 
opposite trend to that of monthly Changjiang discharge (Figure 12b). During the dry season, SSS values were 
higher, while the SSS gradually decreased during the wet season, reaching the lowest SSS value in July or August. 
In additional, from the time series, the SSS showed the extreme low values when Changjiang River flood events 
occurred, such as in the summers in 2010, 2016 and 2020. It suggests that our SSS model was able to capture the 
significant interannual variations of the Changjiang River plume, the RF-based SSS model can be considered as 
an efficient tool for mapping and monitoring the SSS in the ECS, especially for the low-salinity plume.

4.3. Model Application to Other Chinese Marginal Seas

In order to examine the generally applicability of the SSS model for Chinese marginal seas, we applied the model 
to the YS and BS that are adjacent seas of the ECS. The current circulations of these two seas are similar with 
that in the ECS, especially, also affected by freshwater input (Lin et al., 2005; Zhang et al., 2004). The seasonal 

Figure 12. (a) Correlation between Changjiang River discharge and MODIS-derived SSS in the subregion (Box 1), with N = 238. (b) Interannual variations of 
MODIS-derived SSS in the Box 1 and Changjiang discharge during August 2002 to July 2022.
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and spatial variations of monthly SSS distribution in the YS and BS from April 2015 to July 2022 were shown 
in Figure 13, based on the monthly MODIS L3 Rrs and SST data. Similar to the ECS, the low SSS generally 
distributed near the inshore coast (Figure 7), whereas the high SSS are mainly dominated in the central YS and 
BS. Specifically, the BS comprises three major bays and many rivers discharge into the BS, among which the 
Yellow River is the largest river. The YS not only has frequent water transportation with the BS and ECS, but also 
receives large quantities of Changjiang River discharge.

From autumn to early spring, when the northeastern monsoon winds prevail over the YS and BS, the saline YS warm 
current (YSWC) intrudes into the central BS through the BS Strait, resulting in the BS central has higher SSS than that 
in the coastal waters. Furthermore, the less saline BS coastal water (BSCoW) also outflows from southern BS Strait 
and flows southward along the coastal to the YS, therefore, the low SSS is mainly distributed in the nearshore waters 
of the YS (Figures 13a–13d and 13i–13l; Chen, 2009; Lin et al., 2001). From the late spring to summer, the weak 
northeastern monsoon wind turns to the southwest wind, which is unfavorable to the development of YSWC, coupled 
with the strong influences of the freshwater input, the SSS was the lowest in summer of the BS and YS, especially in 
the coastal waters. However, the relative higher SSS is always distributed in the central of southern YS all year around, 
which may be affected by the YS cold water (YSCW) (Figures 13e–13h; Sun et al., 2019). Overall, the distributed 
patterns of monthly MODIS-derived SSS in the YS and BS by using the RF-based SSS model developed in the ECS 
are in good agreement with the results of reported studies (Qing et al., 2013; Sun et al., 2019, 2022; Yu et al., 2017; 
Zhang et al., 2018), except the SSS in the central BS from May to August was lower. It may be because the RF model 
was developed based on the observed SSS of the ECS, and the observed SSS was lower from May to August.

SMAP was designed to monitor the SSS through L-band passive microwave sensing (Entekhabi et al., 2010). Due 
to the absence of publicly available observational data for the BS and YS, the estimated SSS by RF model based 
MODIS products and SMAP-estimated SSS from April 2015 to July 2022 were compared to assess the performance 
of the RF-based SSS model applied to the YS and BS. The monthly L3 SMAP-estimated SSS with a resolution of 
0.25° × 0.25° was downloaded from Jet Propulsion Laboratory (JPL, 2020. https://doi.org/10.5067/SMP50-3TMCS). 
The spatial distributions of SMAP-estimated monthly SSS in the YS and BS were shown in Figure 14. Clearly, the 
spatial distribution patterns of SSS were similar with MODIS-derived SSS (Figure 13), but the SMAP-estimated SSS 
has coarse spatial resolution and no coverage in very nearshore waters, probably may not provide details in SSS spatial 

Figure 13. Distributions of monthly MODIS-derived SSS in the Yellow sea and Bohai sea during April 2015–July 2022 using the RF model developed based on the 
ECS in situ SSS data.
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variations. In additional, compare with the MODIS-derived SSS, the SMAP-estimated SSS was lower in the YS in 
cold season, and higher in central BS in summer, which may be attributed to the SMAP performance is worse with 
a high uncertainty in the Chinese marginal seas due to the land-sea contamination and low SST (Jang et al., 2021).

5. Conclusions
Although microwave satellite sensors have been deployed for SSS observation, SSS products with high tempo-
ral and spatial resolution remain a challenge due to the coarse spatial resolution and limited skill in nearshore 
waters. In this study, a RF model was first developed to accurately estimate the SSS for the ECS with a spatial 
resolution of ∼1 km based on a large synchronous data set of in situ SSS and MODIS-derived Rrs(λ) and SST. 
The SSS model performed best with the Rrs(412), Rrs(488), Rrs(555), Rrs(667), SST and JD as model inputs. 
The accuracy of the SSS model was also validated with a RMSE of 0.66 using an independent data set, which 
was in agreement with the performance of the model training. The SSS model responded to uncertainties 
of each input showed that the estimated SSS variations induced by errors in SST and Rrs were all within the 
uncertainty of the RF model. The RF-based SSS model has been successfully applied in the Chinese marginal 
seas, indicating that RF model is an efficient tool to monitor the temporal and spatial variations in SSS and the 
formation of Changjiang River plume in the ECS. This study shows that the RF-based SSS model is a robust 
approach for SSS modeling from space in the coastal oceans although it is a challenging mission due to the 
high uncertainties of the satellite products in coastal oceans. This model could be adapted to other regions 
where the hydrology environment is completely different from the ECS by retraining the model with a local 
data set.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Figure 14. Distributions of monthly SMAP-derived SSS in the Yellow sea and Bohai sea during April 2015–July 2022.
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Data Availability Statement
The raw sea surface salinity data for RF model development are available at https://doi.org/10.5281/
zenodo.8019553 (Liu, 2023).
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