Vis enkel innførsel

dc.contributor.authorKing, Andrew Luke
dc.contributor.authorJenkins, Bethany D.
dc.contributor.authorWallace, Joselynn R.
dc.contributor.authorLiu, Yuan
dc.contributor.authorWikfors, Gary H.
dc.contributor.authorMilke, Lisa M.
dc.contributor.authorMeseck, Shannon L.
dc.date.accessioned2018-09-13T11:44:46Z
dc.date.available2018-09-13T11:44:46Z
dc.date.created2015-12-30T19:20:26Z
dc.date.issued2015
dc.identifier.citationMarine Ecology Progress Series. 2015, 537, 59-69.nb_NO
dc.identifier.issn0171-8630
dc.identifier.urihttp://hdl.handle.net/11250/2562507
dc.description.abstractCarbon dioxide (CO2) is the primary substrate for photosynthesis by the phytoplankton that form the base of the marine food web and mediate biogeochemical cycling of C and nutrient elements. Specific growth rate and elemental composition (C:N:P) were characterized for 7 cosmopolitan coastal and oceanic phytoplankton species (5 diatoms and 2 chlorophytes) using low density, nutrient-replete, semi-continuous culture experiments in which CO2 was manipulated to 4 levels ranging from post-bloom/glacial maxima (<290 ppm) to geological maxima levels (>2900 ppm). Specific growth rates at high CO2 were from 19 to 60% higher than in low CO2 treatments in 4 species and 44% lower in 1 species; there was no significant change in 2 species. Higher CO2 availability also resulted in elevated C:P and N:P molar ratios in Thalassiosira pseudonana (~60 to 90% higher), lower C:P and N:P molar ratios in 3 species (~20 to 50% lower), and no change in 3 species. Carbonate system-driven changes in growth rate did not necessarily result in changes in elemental composition, or vice versa. In a subset of 4 species for which fatty acid composition was examined, elevated CO2 did not affect the contribution of polyunsaturated fatty acids to total fatty acids significantly. These species show relatively little sensitivity between present day CO2 and predicted ocean acidification scenarios (year 2100). The results, however, demonstrate that CO2 availability at environmentally and geologically relevant scales can result in large changes in phytoplankton physiology, with potentially large feedbacks to ocean biogeochemical cycles and ecosystem structure.nb_NO
dc.language.isoengnb_NO
dc.publisherInter Researchnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEffects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton speciesnb_NO
dc.title.alternativeEffects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton speciesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© The authors 2015nb_NO
dc.source.pagenumber59-69nb_NO
dc.source.volume537nb_NO
dc.source.journalMarine Ecology Progress Seriesnb_NO
dc.identifier.doi10.3354/meps11458
dc.identifier.cristin1304930
cristin.unitcode7464,20,14,0
cristin.unitnameMarin biogeokjemi og oseanografi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal