Vis enkel innførsel

dc.contributor.authorBraaten, Hans Fredrik Veiteberg
dc.contributor.authorHarman, Christopher Peter
dc.contributor.authorØverjordet, Ida Beathe
dc.contributor.authorLarssen, Thorjørn
dc.date.accessioned2019-01-03T15:29:36Z
dc.date.available2019-01-03T15:29:36Z
dc.date.created2014-11-25T21:55:49Z
dc.date.issued2014
dc.identifier.citationInternational Journal of Environmental Analytical Chemistry. 2014, 94 (9), 863-873.nb_NO
dc.identifier.issn0306-7319
dc.identifier.urihttp://hdl.handle.net/11250/2579075
dc.description.abstractThe biogeochemical cycling of mercury (Hg) in the marine environment is an issue of global concern, as consumption of marine fish is a major route of human exposure to the toxic specie methylmercury (MeHg). The most widely utilised and accepted technique for preparing biological tissue samples for the analysis of MeHg involves an alkaline digestion of the sample. Recent studies suggest, however, that this technique is inadequate to produce satisfactory recoveries for certain biological samples, including fish, fur, feathers and other ‘indicator’ tissues which contain relatively high levels of MeHg. Thus an improved acidic extraction method has been proven to produce more satisfactory results for a wide range of biological tissues. The present study compares the two methods on real sample material from different organisms of an Arctic marine food chain, and shows how this could lead to misinterpretation of analytical results. Results show significantly (p < 0.05) lower concentrations for alkaline digestion for large parts of the food chain; especially in fish and birds. The mean differences in concentrations found between the two different methods were 28, 31 and 25% for fish (Polar and Atlantic cod), Little Auk and Kittiwake, respectively. For samples lower in the food chain (i.e. zooplankton and krill) no significant differences were found. This leads to a clear underestimation of the levels of MeHg found higher up in these food chains; the ratio of MeHg to Hg in biological samples; and thus potentially erroneous conclusions drawn from these results concerning the biological cycling of mercury species. We hypothesise that the main reasons for these differences are poor extraction efficiency and/or matrix effects on the ethylation step prior to analysis. This is the first study to examine the effects of these artefacts on real environmental samples covering a complete food chain.nb_NO
dc.language.isoengnb_NO
dc.publisherTaylor & Francisnb_NO
dc.titleEffects of sample preparation on methylmercury concentrations in arctic organismsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber863-873nb_NO
dc.source.volume94nb_NO
dc.source.journalInternational Journal of Environmental Analytical Chemistrynb_NO
dc.source.issue9nb_NO
dc.identifier.doi10.1080/03067319.2014.900678
dc.identifier.cristin1177072
dc.relation.projectNorges forskningsråd: 196295nb_NO
cristin.unitcode7464,30,12,0
cristin.unitcode7464,20,12,0
cristin.unitcode7464,30,0,0
cristin.unitnameAkvatiske miljøgifter
cristin.unitnameMarin forurensning
cristin.unitnameFagsenter for ferskvannsmiljø
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel