Vis enkel innførsel

dc.contributor.authorHogle, Shane L
dc.contributor.authorDupont, Christopher L
dc.contributor.authorHopkinson, Brian M
dc.contributor.authorKing, Andrew L
dc.contributor.authorBuck, Kristen N
dc.contributor.authorRoe, Kelly L
dc.contributor.authorStuart, Rhona K
dc.contributor.authorAllen, Andrew E
dc.contributor.authorMann, Elizabeth L
dc.contributor.authorJohnson, Zackary I
dc.contributor.authorBarbeau, Katherine A
dc.date.accessioned2019-05-14T12:04:47Z
dc.date.available2019-05-14T12:04:47Z
dc.date.created2019-03-14T12:40:12Z
dc.date.issued2018
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America. 2018, 115 (52), 13300-13305.nb_NO
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/11250/2597579
dc.description.abstractSubsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season.We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.nb_NO
dc.language.isoengnb_NO
dc.publisherNational Academy of Sciencesnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titlePervasive iron limitation at subsurface chlorophyll maxima of the California Currentnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber13300-13305nb_NO
dc.source.volume115nb_NO
dc.source.journalProceedings of the National Academy of Sciences of the United States of Americanb_NO
dc.source.issue52nb_NO
dc.identifier.doi10.1073/pnas.1813192115
dc.identifier.cristin1684772
cristin.unitcode7464,20,14,0
cristin.unitnameMarin biogeokjemi og oseanografi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal