Vis enkel innførsel

dc.contributor.authorMarkelov, Igor
dc.contributor.authorCouture, Raoul-Marie
dc.contributor.authorFischer, Rachele
dc.contributor.authorHaande, Sigrid
dc.contributor.authorVan Cappellen, Philippe
dc.date.accessioned2020-09-17T07:46:05Z
dc.date.available2020-09-17T07:46:05Z
dc.date.created2020-01-28T15:52:18Z
dc.date.issued2019
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2019, 124 (12), 3847-3866.en_US
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/2678153
dc.description.abstractWe expanded the existing one‐dimensional MyLake model by incorporating a vertically resolved sediment diagenesis module and developing a reaction network that seamlessly couples the water column and sediment biogeochemistry. The application of the MyLake‐Sediment model to boreal Lake Vansjø illustrates the model's ability to reproduce daily water quality variables and predict sediment‐water column exchange fluxes over a long historical period. In prognostic scenarios, we assessed the importance of sediment processes and the effects of various climatic and anthropogenic drivers on the lake's biogeochemistry and phytoplankton dynamics. First, MyLake‐Sediment was used to simulate the potential impacts of increasing air temperature on algal growth and water quality. Second, the key role of ice cover in controlling water column mixing and biogeochemical cycles was analyzed in a series of scenarios that included a fully ice‐free end‐member. Third, in another end‐member scenario P loading from the watershed to the lake was abruptly halted. The model results suggest that remobilization of legacy P stored in the bottom sediments could sustain the lake's primary productivity on a time scale of several centuries. Finally, while the majority of management practices to reduce excessive algal growth in lakes focus on reducing external P loads, other efforts rely on the addition of reactive materials that sequester P in the sediment. Therefore, we investigated the effectiveness of ferric iron additions in decreasing the dissolved phosphate efflux from the sediment and, consequently, limit phytoplankton growth in Lake Vansjø.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleCoupling Water Column and Sediment Biogeochemical Dynamics: Modeling Internal Phosphorus Loading, Climate Change Responses, and Mitigation Measures in Lake Vansjø, Norwayen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber3847-3866en_US
dc.source.volume124en_US
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.source.issue12en_US
dc.identifier.doi10.1029/2019JG005254
dc.identifier.cristin1784442
dc.relation.projectNorges forskningsråd: 244558en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal