Vis enkel innførsel

dc.contributor.authorMoe, Jannicke
dc.contributor.authorMadsen, Anders
dc.contributor.authorConnors, Kristin
dc.contributor.authorRawlings, Jane
dc.contributor.authorBelanger, Scott
dc.contributor.authorLandis, Wayne
dc.contributor.authorWolf, Raoul
dc.contributor.authorLillicrap, Adam David
dc.date.accessioned2020-09-18T08:06:45Z
dc.date.available2020-09-18T08:06:45Z
dc.date.created2020-09-06T22:28:46Z
dc.date.issued2020
dc.identifier.citationEnvironmental Modelling & Software. 2020, 126, 104655.en_US
dc.identifier.issn1364-8152
dc.identifier.urihttps://hdl.handle.net/11250/2678395
dc.description.abstractA hybrid Bayesian network (BN) was developed for predicting the acute toxicity of chemicals to fish, using data from fish embryo toxicity (FET) testing in combination with other information. This model can support the use of FET data in a Weight-of-Evidence (WOE) approach for replacing the use of ju-venile fish. The BN predicted correct toxicity intervals for 69%–80% of the tested substances. The model was most sensitive to components quantified by toxicity data, and least sensitive to compo-nents quantified by expert knowledge. The model is publicly available through a web interface. Fur-ther development of this model should include additional lines of evidence, refinement of the discre-tisation, and training with a larger dataset for weighting of the lines of evidence. A refined version of this model can be a useful tool for predicting acute fish toxicity, and a contribution to more quantitative WOE approaches for ecotoxicology and environmental assessment more generally.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDevelopment of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidenceen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17en_US
dc.source.volume126en_US
dc.source.journalEnvironmental Modelling & Softwareen_US
dc.identifier.doi10.1016/j.envsoft.2020.104655
dc.identifier.cristin1827597
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal