Vis enkel innførsel

dc.contributor.authorMaavara, Taylor
dc.contributor.authorSiirila-Woodburn, Erica R.
dc.contributor.authorMaina, Fadji
dc.contributor.authorMaxwell, Reed M.
dc.contributor.authorSample, James Edward
dc.contributor.authorChadwick, K. Dana
dc.contributor.authorCarroll, Rosemary
dc.contributor.authorNewcomer, Michelle E.
dc.contributor.authorDong, Wenming
dc.contributor.authorWilliams, Kenneth H.
dc.contributor.authorSteefel, Carl I.
dc.contributor.authorBouskill, Nicholas J.
dc.date.accessioned2022-03-11T09:00:02Z
dc.date.available2022-03-11T09:00:02Z
dc.date.created2022-02-16T11:07:37Z
dc.date.issued2021
dc.identifier.citationPLOS ONE. 2021, 16 (3), e0247907.en_US
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/11250/2984509
dc.description.abstractThere is a growing understanding of the role that bedrock weathering can play as a source of nitrogen (N) to soils, groundwater and river systems. The significance is particularly apparent in mountainous environments where weathering fluxes can be large. However, our understanding of the relative contributions of rock-derived, or geogenic, N to the total N supply of mountainous watersheds remains poorly understood. In this study, we develop the High-Altitude Nitrogen Suite of Models (HAN-SoMo), a watershed-scale ensemble of process-based models to quantify the relative sources, transformations, and sinks of geogenic and atmospheric N through a mountain watershed. Our study is based in the East River Watershed (ERW) in the Upper Colorado River Basin. The East River is a near-pristine headwater watershed underlain primarily by an N-rich Mancos Shale bedrock, enabling the timing and magnitude of geogenic and atmospheric contributions to watershed scale dissolved N-exports to be quantified. Several calibration scenarios were developed to explore equifinality using >1600 N concentration measurements from streams, groundwater, and vadose zone samples collected over the course of four years across the watershed. When accounting for recycling of N through plant litter turnover, rock weathering accounts for approximately 12% of the annual dissolved N sources to the watershed in the most probable calibration scenario (0–31% in other scenarios), and 21% (0–44% in other scenarios) when considering only “new” N sources (i.e. geogenic and atmospheric). On an annual scale, instream dissolved N elimination, plant turnover (including cattle grazing) and atmospheric deposition are the most important controls on N cycling.en_US
dc.language.isoengen_US
dc.publisherPublic Library of Scienceen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleModeling geogenic and atmospheric nitrogen through the East River Watershed, Colorado Rocky Mountainsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 Maavara et al.en_US
dc.source.pagenumber30en_US
dc.source.volume16en_US
dc.source.journalPLOS ONEen_US
dc.source.issue3en_US
dc.identifier.doi10.1371/journal.pone.0247907
dc.identifier.cristin2002218
dc.source.articlenumbere0247907en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal