Vis enkel innførsel

dc.contributor.authorDemars, Benoît Olivier Laurent
dc.contributor.authorDörsch, Peter
dc.date.accessioned2024-01-16T12:48:16Z
dc.date.available2024-01-16T12:48:16Z
dc.date.created2023-11-30T10:50:35Z
dc.date.issued2023
dc.identifier.citationWater Research. 2023, 247, 120842.en_US
dc.identifier.issn0043-1354
dc.identifier.urihttps://hdl.handle.net/11250/3111846
dc.description.abstractThe estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day−1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day−1) likely due to a lack of allochthonous carbon supply and sandy sediment.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleEstimation of ecosystem respiration and photosynthesis in supersaturated stream water downstream of a hydropower planten_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.source.pagenumber9en_US
dc.source.volume247en_US
dc.source.journalWater Researchen_US
dc.identifier.doi10.1016/j.watres.2023.120842
dc.identifier.cristin2206193
dc.source.articlenumber120842en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal