Vis enkel innførsel

dc.contributor.authorCorman, Jessica R.
dc.contributor.authorZwart, Jacob A.
dc.contributor.authorKlug, Jennifer
dc.contributor.authorBruesewitz, Denise A.
dc.contributor.authorde Eyto, Elvira
dc.contributor.authorKlaus, Marcus
dc.contributor.authorKnoll, Lesley B.
dc.contributor.authorRusak, James A.
dc.contributor.authorVanni, Michael J.
dc.contributor.authorAlfonso, María Belén
dc.contributor.authorFernandez, Rocio Luz
dc.contributor.authorYao, Huaxia
dc.contributor.authorAustnes, Kari
dc.contributor.authorCouture, Raoul-Marie
dc.contributor.authorde Wit, Heleen
dc.contributor.authorKarlsson, Jan
dc.contributor.authorLaas, Alo
dc.date.accessioned2024-01-16T12:52:53Z
dc.date.available2024-01-16T12:52:53Z
dc.date.created2023-11-30T12:40:34Z
dc.date.issued2023
dc.identifier.citationLimnology and Oceanography. 2023, 68 (12), 2617-2631.en_US
dc.identifier.issn0024-3590
dc.identifier.urihttps://hdl.handle.net/11250/3111852
dc.description.abstractIn lakes, the rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) are often controlled by resource availability. Herein, we explore how catchment vs. within lake predictors of metabolism compare using data from 16 lakes spanning 39°N to 64°N, a range of inflowing streams, and trophic status. For each lake, we combined stream loads of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) with lake DOC, TN, and TP concentrations and high frequency in situ monitoring of dissolved oxygen. We found that stream load stoichiometry indicated lake stoichiometry for C : N and C : P (r2 = 0.74 and r2 = 0.84, respectively), but not for N : P (r2 = 0.04). As we found a strong positive correlation between TN and TP, we only used TP in our statistical models. For the catchment model, GPP and R were best predicted by DOC load, TP load, and load N : P (R2 = 0.85 and R2 = 0.82, respectively). For the lake model, GPP and R were best predicted by TP concentrations (R2 = 0.86 and R2 = 0.67, respectively). The inclusion of N : P in the catchment model, but not the lake model, suggests that both N and P regulate metabolism and that organisms may be responding more strongly to catchment inputs than lake resources. Our models predicted NEP poorly, though it is unclear why. Overall, our work stresses the importance of characterizing lake catchment loads to predict metabolic rates, a result that may be particularly important in catchments experiencing changing hydrologic regimes related to global environmental change.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleResponse of lake metabolism to catchment inputs inferred using high-frequency lake and stream data from across the northern hemisphereen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.source.pagenumber2617-2631en_US
dc.source.volume68en_US
dc.source.journalLimnology and Oceanographyen_US
dc.source.issue12en_US
dc.identifier.doi10.1002/lno.12449
dc.identifier.cristin2206362
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal