Vis enkel innførsel

dc.contributor.authorSpanu, Davide
dc.contributor.authorDhahri, Aicha
dc.contributor.authorBinda, Gilberto
dc.contributor.authorMonticelli, Damiano
dc.contributor.authorPinna, Marco
dc.contributor.authorRecchia, Sandro
dc.date.accessioned2024-01-24T12:37:08Z
dc.date.available2024-01-24T12:37:08Z
dc.date.created2023-12-20T12:48:29Z
dc.date.issued2023
dc.identifier.citationChemosensors. 2023, 11 (11), 560.en_US
dc.identifier.issn2227-9040
dc.identifier.urihttps://hdl.handle.net/11250/3113586
dc.description.abstractThis study explores an ultrarapid electrochemical self-doping procedure applied to anodic titanium dioxide (TiO2) nanotube arrays in an alkaline solution to boost their performance for electroanalytical and photocatalytic applications. The electrochemical self-doping process (i.e., the creation of surface Ti3+ states by applying a negative potential) is recently emerging as a simpler and cleaner way to improve the electronic properties of TiO2 compared to traditional chemical and high-temperature doping strategies. Here, self-doping was carried out through varying voltages and treatment times to identify the most performing materials without compromising their structural stability. Interestingly, cyclic voltammetry characterization revealed that undoped TiO2 shows negligible activity, whereas all self-doped materials demonstrate their suitability as electrode materials: an outstandingly short 10 s self-doping treatment leads to the highest electrochemical activity. The electrochemical detection of hydrogen peroxide was assessed as well, demonstrating a good sensitivity and a linear detection range of 3–200 µM. Additionally, the self-doped TiO2 nanotubes exhibited an enhanced photocatalytic activity compared to the untreated substrate: the degradation potential of methylene blue under UV light exposure increased by 25% in comparison to undoped materials. Overall, this study highlights the potential of ultrafast electrochemical self-doping to unleash and improve TiO2 nanotubes performances for electroanalytical and photocatalytic applications.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleUltrafast Electrochemical Self-Doping of Anodic Titanium Dioxide Nanotubes for Enhanced Electroanalytical and Photocatalytic Performanceen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.source.pagenumber17en_US
dc.source.volume11en_US
dc.source.journalChemosensorsen_US
dc.source.issue11en_US
dc.identifier.doi10.3390/chemosensors11110560
dc.identifier.cristin2216333
dc.source.articlenumber560en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal