Show simple item record

dc.contributor.authorLand, Peter E
dc.contributor.authorFindlay, Helen S
dc.contributor.authorShutler, Jamie D
dc.contributor.authorAshton, Ian G C
dc.contributor.authorHolding, Thomas
dc.contributor.authorGrouazel, Antoine
dc.contributor.authorGirard-Ardhuin, Fanny
dc.contributor.authorReul, Nicolas
dc.contributor.authorJean-Francois, Piolle
dc.contributor.authorChapron, Bertrand
dc.contributor.authorQuilfen, Yves
dc.contributor.authorBellerby, Richard G J
dc.contributor.authorBhadbury, Punyasloke
dc.contributor.authorSalisbury, Joseph
dc.contributor.authorVandemark, Douglas
dc.contributor.authorSabia, Roberto
dc.date.accessioned2020-06-29T08:47:00Z
dc.date.available2020-06-29T08:47:00Z
dc.date.created2019-11-28T14:03:45Z
dc.date.issued2019
dc.identifier.citationRemote Sensing of Environment. 2019, 235, 111469.en_US
dc.identifier.issn0034-4257
dc.identifier.urihttps://hdl.handle.net/11250/2659806
dc.descriptionEmbargo until 08 November 2021en_US
dc.description.abstractImproving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ data are reproducible, both regionally and globally, using salinity and temperature datasets, with satellite observed salinity from Aquarius and SMOS providing performance comparable to other datasets for the majority of case studies. Global root mean squared difference (RMSD) between in situ validation data and satellite estimates is 17 μmol kg−1 with bias  < 5 μmol kg−1 for AT and 30 μmol kg−1 with bias  < 10 μmol kg−1 for CT. This analysis demonstrates that satellite sensors provide a credible solution for monitoring surface synoptic scale AT and CT. It also enables the first demonstration of observation-based synoptic scale AT and CT temporal mixing in the Amazon plume for 2010–2016, complete with a robust estimation of their uncertainty.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleOptimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengalen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber15en_US
dc.source.volume235en_US
dc.source.journalRemote Sensing of Environmenten_US
dc.identifier.doi10.1016/j.rse.2019.111469
dc.identifier.cristin1753845
dc.relation.projectESA - den europeiske romfartsorganisasjonen: 4000112091/14/I-LGen_US
dc.relation.projectESA - den europeiske romfartsorganisasjonen: 4000110778/14/I-BGen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal